Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Generation and stability of subharmonic and modulated subharmonic oscillations in nonlinear systems


Authors: B. J. Matkowsky, E. H. Rogers and L. A. Rubenfeld
Journal: Quart. Appl. Math. 30 (1972), 329-336
DOI: https://doi.org/10.1090/qam/99724
MathSciNet review: QAM99724
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] T. von Karman, The engineer grapples with nonlinear problems, Bull. Amer. Math. Soc. 46, 615-683, (1940) MR 0003131
  • [2] S. Lefshetz, Linear and nonlinear oscillations, inModern mathematics for the engineer, New York, McGraw-Hill, 1956, pp. 7-30
  • [3] J. J. Stoker, Nonlinear vibrations, Interscience, 1950 MR 0034932
  • [4] N. Minorsky, Nonlinear oscillations, Van Nostrand, 1962 MR 0137891
  • [5] A. Andronov, A. Vitt, and S. Khaikin, Theory of oscillators, Addison-Wesley, 1966
  • [6] N. Krylov and N. Bogoliuboff, Introduction to nonlinear mechanics, Princeton University Press, 1947
  • [7] H. Cohen, On subharmonic synchronization of nearly-linear systems, Quart. Appl. Math. 13, 102-105 (1955) MR 0069991
  • [8] H. Cohen, Subharmonic synchronization for the forced van der Pol equation, in Actes du colloque international des vibrations non-lineaires, Ile de Porquerolles, 1951, P.S.T. 281, French Ministry of Air, 1953, pp. 169-188 MR 0058056
  • [9] J. D. Cole, Perturbation methods in applied mathematics, Blaisdell, 1968 MR 0246537


Additional Information

DOI: https://doi.org/10.1090/qam/99724
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society