Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



The transient temperature field in a composite semi-space resulting from an incident heat flux

Author: P. B. Grimado
Journal: Quart. Appl. Math. 31 (1974), 379-393
DOI: https://doi.org/10.1090/qam/99694
MathSciNet review: QAM99694
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: The two-dimensional, transient temperature field in a composite semi-space resulting from an incident heat input is constructed using operational techniques. Examples of the temperature field are presented with general conclusions that allow a qualitative assessment of the temperature distribution given the heat input and thermal properties of the constituent materials.

References [Enhancements On Off] (What's this?)

  • [1] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Clarendon Press, Oxford, England, 1959 MR 959730
  • [2] V. R. Thiruvenkatachar and B. S. Ramakushna, A case of combined radial and axial heat flow in composite cylinders, Quart. Appl. Math. 10, 255-262 (1952) MR 0050142
  • [3] I. J. Kumar and V. R. Thiruvenkatachar, Heat flow in a finite composite cylinder by harmonic variation of surface temperature, Indian J. Math. 3, 47-62 (1961)
  • [4] I. J. Kumar, Heat flow in hollow composite cylinders, Proc. Nat. Inst. Sci. India 29, 452-459 (1963)
  • [5] N. Y. Ölcer, On a heat flow problem in a hollow circular cylinder, Proc. Camb. Phil. Soc. 64, 193-202 (1968)
  • [6] N. Y. ölcer, A general class of unsteady heat flow problems in a finite composite hollow circular cylinder, Quart. Appl. Math. 26, 355-371, (1968)
  • [7] N. Y. ölcer, A general unsteady heat flow problem in a finite composite hollow circular cylinder under boundary conditions of the second kind, Nuclear Engr. Des. 7, 97-112 (1968)
  • [8] A. Erdélyi et al., Tables of integral transforms, Vol. 1, McGraw-Hill, New York, 1954
  • [9] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, Applied Mathematics Series, 55, 1965 MR 0167642
  • [10] P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, second edition, revised, Springer-Verlag, New York, 1971 MR 0277773
  • [11] C. Heuman, Tables of complete elliptic integrals, J. Math Phys. 20, 127-206 (1941) MR 0003572
  • [12] L. M. Milne-Thomson, Jacobian elliptic function tables, Dover, New York, 1950 MR 0088071

Additional Information

DOI: https://doi.org/10.1090/qam/99694
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society