The transient temperature field in a composite semi-space resulting from an incident heat flux

Author:
P. B. Grimado

Journal:
Quart. Appl. Math. **31** (1974), 379-393

DOI:
https://doi.org/10.1090/qam/99694

MathSciNet review:
QAM99694

Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: The two-dimensional, transient temperature field in a composite semi-space resulting from an incident heat input is constructed using operational techniques. Examples of the temperature field are presented with general conclusions that allow a qualitative assessment of the temperature distribution given the heat input and thermal properties of the constituent materials.

**[1]**H. S. Carslaw and J. C. Jaeger,*Conduction of heat in solids*, Clarendon Press, Oxford, England, 1959 MR**959730****[2]**V. R. Thiruvenkatachar and B. S. Ramakushna,*A case of combined radial and axial heat flow in composite cylinders*, Quart. Appl. Math.**10**, 255-262 (1952) MR**0050142****[3]**I. J. Kumar and V. R. Thiruvenkatachar,*Heat flow in a finite composite cylinder by harmonic variation of surface temperature*, Indian J. Math.**3**, 47-62 (1961)**[4]**I. J. Kumar,*Heat flow in hollow composite cylinders*, Proc. Nat. Inst. Sci. India**29**, 452-459 (1963)**[5]**N. Y. Ölcer,*On a heat flow problem in a hollow circular cylinder*, Proc. Camb. Phil. Soc.**64**, 193-202 (1968)**[6]**N. Y. ölcer,*A general class of unsteady heat flow problems in a finite composite hollow circular cylinder*, Quart. Appl. Math.**26**, 355-371, (1968)**[7]**N. Y. ölcer,*A general unsteady heat flow problem in a finite composite hollow circular cylinder under boundary conditions of the second kind*, Nuclear Engr. Des.**7**, 97-112 (1968)**[8]**A. Erdélyi et al.,*Tables of integral transforms*, Vol. 1, McGraw-Hill, New York, 1954**[9]**M. Abramowitz and I. A. Stegun,*Handbook of mathematical functions with formulas, graphs and mathematical tables*, National Bureau of Standards, Applied Mathematics Series, 55, 1965 MR**0167642****[10]**P. F. Byrd and M. D. Friedman,*Handbook of elliptic integrals for engineers and scientists*, second edition, revised, Springer-Verlag, New York, 1971 MR**0277773****[11]**C. Heuman,*Tables of complete elliptic integrals*, J. Math Phys.*20*, 127-206 (1941) MR**0003572****[12]**L. M. Milne-Thomson,*Jacobian elliptic function tables*, Dover, New York, 1950 MR**0088071**

Additional Information

DOI:
https://doi.org/10.1090/qam/99694

Article copyright:
© Copyright 1974
American Mathematical Society