Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Applications of invariant transformations in one-dimensional non-steady gasdynamics


Authors: S. P. Castell and C. Rogers
Journal: Quart. Appl. Math. 32 (1974), 241-251
DOI: https://doi.org/10.1090/qam/99682
MathSciNet review: QAM99682
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Certain reciprocal and adjoint transformations available for one-dimensional non-steady gasdynamic flow are applied to an existing solution to construct new exact solutions of the governing equations. The particle trajectories and the pressure-density relations on these trajectories are calculated. An application of the adjoint transformation in studying the flow between a piston and a non-uniform shock wave is indicated.


References [Enhancements On Off] (What's this?)

  • [1] H. Bateman, Proc. Nat. Acad. Sci. U.S.A. 24, 246-251 (1938)
  • [2] A. Haar, Math. Ann. 100, 481-502 (1928)
  • [3] R. C. Prim, J. Appl. Phys. 20, 448-450 (1949)
  • [4] H. S. Tsien, Two-dimensional subsonic flow of compressible fluids, J. Aero. Sci. 6, 399-407 (1939) MR 0003135
  • [5] H. Bateman, Quart. Appl. Math. 1, 281-298 (1944) MR 0009686
  • [6] G. Power and P. Smith, Applications of a reciprocal properly to subsonic flow, Appl. Sci. Res. A8, 386-392 (1959); Reciprocal properties of plane gas flows, J. Math. Mech. 10, 349-361 (1961) MR 0128246
  • [7] G. Power and A. Tunbridge, Reciprocal properties in magnetogasdynamics, ZAMM 43, 191-197 (1963) MR 0153249
  • [8] G. Power and D. Walker, Some reciprocal relations in rotational magnetogasdynamic flow, ZAMP 15, 2, 144-154 (1964) MR 0167127
  • [9] A. A. Nikol'skii, Invariant transformations of the equations of motion of an ideal monatomic gas and new classes of their exact solution, P.M.M. 27, 740-756 (1963)
  • [10] P. Smith, An extension of the substitution principle to certain unsteady gas flows, Arch. Rat. Mech Anal. 15, 147-153 (1964) MR 0154519
  • [11] E. D. Tomilov, On the method of invariant transformations of the gas-dynamic equations, P.M.M. 29, 959-960 (1965)
  • [12] v. A. Rykov, On an exact solution of the equations of magnetogasdynamics of finite conductivity, P. M. M. 29, 178-181 (1965)
  • [13] M. D. Ustinov, Transformation and some solutions of the equations of motion of an ideal gas, Izv. AN SSSR Mekh. Zhid. I Gaza (Fluid Dynamics) 3, 68-74 (1966); Ideal gas flow behind a finite-amplitude shock wave, Izv. AN SSSR Mekh. Zhid. I Gaza 2, 1, 88-90 (1967)
  • [14] L. A. Movsesian, On an invariant transformation of equations of one-dimensional unsteady motion of an ideal compressible fluid, P.M.M. 31, 137-141 (1967)
  • [15] M. H. Martin, A new approach to problems in two-dimensional flow, Quart. Appl. Math. 8, 137-150 (1950); The propagation of a plane shock into a quiet atmosphere, Canadian J. Math. 5, 37-39 (1953) MR 0049731
  • [16] L. I. Sedov, On the integration of the equations of one-dimensional motion of a gas, DAN SSSR 90, 5 (1953) MR 0057111
  • [17] C. Rogers, Reciprocal relations in non-steady one-dimensional gasdynamics, ZAMP 19, 1, 58-63 (1968)
  • [18] C. Rogers, Invariant transformations in non-steady gasdynamics and magnetogasdynamics, ZAMP 20, 3, 370-382 (1969)


Additional Information

DOI: https://doi.org/10.1090/qam/99682
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society