Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Unsaturated seepage flow from a horizontal boundary


Author: R. A. Wooding
Journal: Quart. Appl. Math. 33 (1975), 143-159
DOI: https://doi.org/10.1090/qam/99670
MathSciNet review: QAM99670
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. R. Philip, Theory of infiltration, Adv. Hydrosci. 5, 215-296 (1969)
  • [2] C. Braester, G. Dagan, S. Neuman and D. Zaslavsky, A survey of the equations and solutions of unsaturated flow in porous media, 1st Ann. Rep. (Part 1), Project No. A10-SWC-77, Technion--Israel Institute of Technology, 1971
  • [3] A. Poulovassilis and E. C. Childs, The hysteresis of pore water: The non-independence of domains, Soil Sci. 112, 301-312 (1971)
  • [4] G. C. Topp, Soil-water hysteresis: The domain theory extended to pore interaction conditions, Soil Sci. Soc. Amer. Proc. 35, 219-225 (1971)
  • [5] G. A. Turner, The flow-structure in packed beds, Chem. Eng. Sci. 7, 156-165 (1958)
  • [6] D. E. Hill and J. -Y. Parlange, Wetting front instability in layered soils, Soi Sci. Soc. Amer. Proc. 36, 697-702 (1972)
  • [7] H. J. Morel-Seytoux, Introduction to flow of immiscible liquids in porous media, 'Flow Through Porous Media', ed. by R. J. M. De Wiest Academic Press, New York, 455-516 (1969)
  • [8] A. J. Peck, Moisture profile development and air compression during water uptake by bounded porous bodies. 3. Vertical columns, Soil Sci. 100, 44-51 (1965)
  • [9] J. -Y. Parlange, Theory of water-movement in soils: I. One-dimensional absorption, Soil Sci. 111, 134-137 (1971)
  • [10] J. -Y. Parlange, Theory of water-movement in soils: II. One-dimensional infiltration, Soil Sci. 1ll, 170-174 (1971)
  • [11] A. Noblanc and H. J. Morel-Seytoux, Perturbation analysis of two-phase infiltration, J. Hydraul. Div. Proc. ASCE, 98 (HY9), 127-1541 (1972)
  • [12] R. A. Wooding, Perturbation analysis of the equation for the transport of dissolved solids through porous media. II. Basic non-linear problem. J. Hydrol. (Amsterdam) 16, 105-116
  • [13] M. J. Lighthill and G. B. Whitham, On kinematic waves. I. Flood movement in long rivers, Proc. Roy. Soc. London. Ser. A. 229 (1955), 281–316. MR 0072605, https://doi.org/10.1098/rspa.1955.0088
  • [14] M. J. Lighthill, Viscosity effects in sound waves of finite amplitude, Surveys in mechanics, Cambridge, at the University Press, 1956, pp. 250–351 (2 plates). MR 0077346
  • [16] G. C. Topp and E. E. Miller, Hysteretic moisture characteristics and hydraulic conductivities for glass-bead media, Soil Sci. Soc. Amer. Proc. 30, 156-162 (1966)
  • [17] G. C. Topp, Soil-water hysteresis measured in a sandy loam and compared with the hysteretic domain model, Soil Sci. Soc. Amer. Proc. 33, 645-651 (1969)
  • [18] G. C. Topp, Soil water hysteresis in silt loam and clay loam soils, Water Resources Res. 7, 914-920 (1971)
  • [19] J. A. Enderby, The domain model of hysteresis. I. Independent domains, Trans. Faraday Soc. 51, 835-848 (1955)
  • [20] D. H. Everett, A general approach to hysteresis. 4. An alternative formulation of the domain model, Trans. Faraday Soc. 51, 1551-1557 (1955)
  • [21] D. H. Everett, Adsorption hysteresis, 'Solid Gas Interface' ed. E. Alison Flood, 2, 1055-1113 (1967)
  • [22] W. R. Gardner, Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table, Soil Science, 85, 244-249 (1958)
  • [23] J. R. Philip, Steady infiltration from buried point sources and spherical cavities, Water Resources Res. 4, 1039-1047 (1968)
  • [24] R. A. Wooding, Steady infiltration from a shallow circular pond, Water Resources Res. 4, 1259-1273 (1968)
  • [25] R. A. Wooding, Perturbation analysis of the equation for the transport of dissolved solids through porous media. I. Linear problems, J. Hydrol. (Amsterdam) 16, 1--16 (1972)
  • [26] Milton Van Dyke, Perturbation methods in fluid mechanics, Applied Mathematics and Mechanics, Vol. 8, Academic Press, New York-London, 1964. MR 0176702
  • [27] Julian D. Cole, Perturbation methods in applied mathematics, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1968. MR 0246537
  • [28] L. Crocco, Coordinate perturbation and multiple scale in gasdynamics, Philos. Trans. Roy. Soc. London Ser. A 272 (1972), 275–301. MR 0334682, https://doi.org/10.1098/rsta.1972.0051


Additional Information

DOI: https://doi.org/10.1090/qam/99670
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society