A model for one-dimensional, nonlinear viscoelasticity

Author:
R. C. MacCamy

Journal:
Quart. Appl. Math. **35** (1977), 21-33

MSC:
Primary 73.45; Secondary 45K05

DOI:
https://doi.org/10.1090/qam/478939

MathSciNet review:
478939

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem

**[1]**D. R. Bland,*The theory of linear viscoelasticity*, Pergamon Press, New York, 1960 MR**0110314****[2]**B. D. Coleman and M. E. Gurtin,*Waves in materials with memory*. II.*On the growth and decay of one-dimensional acceleration waves*, Arch. Rat. Mech.**19**, 239-265 (1965) MR**0195336****[3]**C. Corduneanu,*Integral equations and stability of feedback systems*, Academic Press, New York, 1973 MR**0358245****[4]**C. M. Dafermos,*An abstract Volterra equation with applications to linear viscoelasticity*, J. Diff. Eq.**7**, 554-569 (1970) MR**0259670****[5]**James Glimm and P. D. Lax,*Decay of solutions of systems of nonlinear hyperbolic conservation laws*, Mem. Amer. Math. Soc.**101**(1970) MR**0265767****[6]**J. M. Greenberg,*A-priori estimates for flows in dissipative materials*(preprint) MR**0450796****[7]**J. M. Greenberg, R. C. MacCamy and V. J. Mizel,*On the existence, uniqueness and stability of solutions of the equation*, J. Math. Mech.**17**, 707-728 (1968)**[8]**P. D. Lax,*Development of singularities of solutions of non-linear hyperbolic differential equations*, J. Math. Phys.**5**, 611-613 (1964) MR**0165243****[9]**Stig-Olaf London,*An existence result on a Volterra equation in a Banach space*(preprint)**[10]**R. C. MacCamy,*Existence uniqueness and stability of*, Indiana Univ. Math. J.**20**, 231-338 (1970) MR**0265790****[11]**R. C. MacCamy,*Nonlinear Volterra equations on a Hilbert space*, J. Diff. Eq.**16**, 373-393 (1974) MR**0377605****[12]**R. C. MacCamy,*Remarks on frequency domain methods for Volterra integral equations*, J. Math. Anal. Appl.**[13]**R. C. MacCamy,*An integro-differential equation with applications in heat flow*, Q. Appl. Math. (this issue)**[14]**R. C. MacCamy and J. S. W. Wong,*Stability theorems for some functional equations*, Trans. Amer. Math. Soc.**164**, 1-37 (1972) MR**0293355****[15]**R. R. Nachlinger and L. T. Wheeler,*Wave propagation and uniqueness in one-dimensional simple materials*, J. Math. Anal. Appl.**48**, 294-300 (1974) MR**0351231****[16]**T. Nashida,*Global smooth solutions for the second order quasilinear equation with first-order dissipation*(preprint)**[17]**J. A. Nohel and D. F. Shea,*Frequency domain methods for Volterra equations*(preprint) MR**0500024**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73.45,
45K05

Retrieve articles in all journals with MSC: 73.45, 45K05

Additional Information

DOI:
https://doi.org/10.1090/qam/478939

Article copyright:
© Copyright 1977
American Mathematical Society