Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the numerical solution of singular integro-differential equations


Authors: N. I. Ioakimidis and P. S. Theocaris
Journal: Quart. Appl. Math. 37 (1979), 325-331
MSC: Primary 65R20
DOI: https://doi.org/10.1090/qam/548991
MathSciNet review: 548991
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A method of numerical solution of a sufficiently wide class of Cauchy-type singular integrodifferential equations along a straight finite interval is presented. This method consists of approximating the integrals in such an equation by using appropriate numerical integration rules and appropriately-selected collocation points and reducing such an equation to a system of linear algebraic equations. This technique constitutes a direct generalization of the corresponding methods of numerical solution of Cauchy-type singular integral equations and presents some advantages over the classical Multhopp method of numerical solution of Cauchy-type singular integrodifferential equations, to which it reduces in some special cases. An application to a specific equation is also made.


References [Enhancements On Off] (What's this?)

  • [1] A. I. Kalandiya, Approximate solution of a class of singular integral equations, Dokl. Akad. Nauk SSSR 125, 715-718 (1959) (English translation available through the British Library-Lending Division: RTS 8730, 1974)
  • [2] A. I. Kalandiya. Mathematical methods of two-dimensional elasticity, Mir Publishers, Moscow, 1973 (English translation: 1975) MR 0400846
  • [3] F. Erdogan and G. D. Gupta, On the numerical solution of singular integral equations, Quart. Appl. Math. 30, 525-534 (1972) MR 0408277
  • [4] P. S. Theocaris and N. I. Ioakimidis, Numerical integration methods for the solution of singular integral equations, Quart. Appl. Math. 35, 173-183 (1977) MR 0445873
  • [5] N. I. Ioakimidis and P. S. Theocaris, On the numerical evaluation of Cauchy principal value integrals, Rev. Roum. Sci. Techn.-Sér. Mécan. Appl. 22, 803-818 (1977) MR 0483321
  • [6] N. I. Ioakimidis and P. S. Theocaris, On the numerical solution of a class of singular integral equations, J. Math. Phys. Sci. 11, 219-235 (1977) MR 0483590
  • [7] P. S. Theocaris, On the numerical solution of Cauchy-type singular integral equations, Serdica, Bulgar. Math. Publ. 2, 252-275 (1976) MR 0448968
  • [8] P. S. Theocaris and N. I. Ioakimidis, On the numerical solution of Cauchy type singular integral equations and the determination of stress intensity factors in case of complex singularities, Zeit. Ang. Math. Phys. (ZAMP) 28, 1085-1098 (1977) MR 0464623
  • [9] P. S. Theocaris and N. I. Ioakimidis, Numerical solution of Cauchy type singular integral equations, Trans. Acad. Athens 40, 1-39 (1977) MR 0659483
  • [10] N. I. Ioakimidis and P. S. Theocaris, The numerical evaluation of a class of generalized stress intensity factors by use of the Lobatto-Jacobi numerical integration rule, Int J. Fract. 14 (1978) (in press) MR 599793
  • [11] P. S. Theocaris and G. Tsamasphyros, Numerical solution of systems of singular integral equations with variable coefficients, J. Applicable Anal. 9, 37-52 (1979) MR 536690
  • [12] H. Multhopp, Die Berechnung der Auftriebsverteilung von Tragflügeln, Luftfahrtforschung 15, 153-166 (1938)
  • [13] S. M. Sharfuddin, A two-dimensional discontinuous boundary-value problem for circular regions and Prandtl's integral equation, Acta Mech. 4, 374-381 (1967)
  • [14] M. Stippes, H. B. Wilson, Jr. and F. N. Krull, A contact stress problem for a smooth disk in an infinite plate, Proc. 4th U.S. Nat. Congr. Appl. Mech. 2, 799-806 (1962) MR 0152183
  • [15] S. Krenk, On the use of the interpolation polynomial for solutions of singular integral equations, Quart. Appl. Math. 32, 479-484 (1975) MR 0474919

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 65R20

Retrieve articles in all journals with MSC: 65R20


Additional Information

DOI: https://doi.org/10.1090/qam/548991
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society