Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The non-uniform motion of a thin smooth rigid wedge into an elastic half-plane


Author: L. M. Brock
Journal: Quart. Appl. Math. 38 (1980), 209-223
DOI: https://doi.org/10.1090/qam/99629
MathSciNet review: QAM99629
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: A two-dimensional problem of non-uniform motion by a smooth, thin, symmetric rigid wedge into the surface of an elastic half-plane is analyzed. Both the wedge starting on the surface and from an embedded position are considered. Based on the integral transforms for a more general imposed displacement, the half-plane surface and wedge path behavior yields explicit information on the various component waves appearing in the solution. Logarithmic singularities are found at the wedge apex for subsonic speeds.


References [Enhancements On Off] (What's this?)

  • [1] L. M. Brock, Int. J. Engng. Sci. 15, 147 (1977)
  • [2] L. M. Brock, Int. J. Engng. Sci. 17, 365 (1979)
  • [3] I. N. Sneddon, The use of integral transforms, McGraw-Hill, New York, 1972, Chaps. 2, 3
  • [4] I. Stakgold, Boundary value problems of mathematical physics, Vol. I, Macmillan, New York, 1967, pp. 18-24 MR 0205776
  • [5] A. T. deHoop, Appl. Sci. Res. B8, 349 (1960)
  • [6] R. B. Lindsay, Mechanical radiation, McGraw-Hill, 1960
  • [7] L. M. Brock, Quart. Appl. Math. 36, 269 (1978) MR 0521409
  • [8] K. B. Broberg, Ark. Fiz. 18, 159 (1960) MR 0115409
  • [9] J. D. Achenbach, Wave propagation in elastic solids, North-Holland, Amsterdam, 1973, pp. 303-309
  • [10] L. M. Brock, Int. J. Engng. Sci. 17, 1211 (1979)
  • [11] A. R. Robinson and J. C. Thompson, Quart. Appl. Math. 33, 215 (1975)
  • [12] L. M. Brock, J. Elasticity 8, 273 (1978)


Additional Information

DOI: https://doi.org/10.1090/qam/99629
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society