Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Stokes flow in a rectangular well: Natural convection and boundary-layer function


Authors: L. M. de Socio, G. Gaffuri and L. Misici
Journal: Quart. Appl. Math. 39 (1982), 499-508
DOI: https://doi.org/10.1090/qam/99622
MathSciNet review: QAM99622
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Free convection in a rectangular well of infinite depth at low Rayleigh number is considered. A pair of opposite vertical walls are at different temperatures, whereas the other walls are adiabatic. The three-dimensional Stokes flow regime is analyzed and the boundary-layer function for the adiabatic walls is determined.


References [Enhancements On Off] (What's this?)

  • [1] D. D. Joseph and L. Sturges, The free surface on a liquid filling a trench heated from its side, J. Fluid Mech. 69, 565-589 (1975) MR 0395466
  • [2] E. R. G. Eckert and R. M. Drake, Jr., Analysis of heat and mass transfer, McGraw-Hill, New York, 1972
  • [3] D. D. Joseph, Stability of fluid motions, Vol. 2, Springer-Verlag, Berlin, 1976
  • [4] R. C. T. Smith, The bending of a semi-infinite strip, Aust. J. Sci. Res. 5, 227-237 (1952) MR 0061543
  • [5] L. M. de Socio, L. Misici and A. Polzonetti, Natural convection in heat generating fluids in cavities, ASME Paper 79-HT-95
  • [6] P. A. Lagerström and R. G. Casten, Basic concepts underlying singular perturbation techniques, SIAM Review 14, 63-120 (1972) MR 0304801
  • [7] R. Courant and R. Hilbert, Methods of mathematical physics, Vol. 1, Interscience Publishers, New York, 1953


Additional Information

DOI: https://doi.org/10.1090/qam/99622
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society