Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The ambiguous twist of Love


Authors: J. C. Alexander and Stuart S. Antman
Journal: Quart. Appl. Math. 40 (1982), 83-92
MSC: Primary 73K05; Secondary 73C99
DOI: https://doi.org/10.1090/qam/652052
MathSciNet review: 652052
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. S. Antman, Ordinary differential equations of one-dimensional nonlinear elasticity, Arch. Rat. Mech. Anal. 61, 307-393 (1976)
  • [2] S. S. Antman and C. S. Kenney, Large buckled states of nonlinearly elastic rods under torsion, thrust, and gravity, Arch. Rational Mech. Anal. 76, 289-338 (1981) MR 628172
  • [3] J. M. Ball, Constitutive inequalities and existence theorems in nonlinear elastostatics, in Nonlinear analysis and mechanics: Heriot-Watt symposium, Vol. I, Pitman Research Notes in Math. 17, London, 187-241 (1977) MR 0478899
  • [4] W. R. Bauer, F. H. C. Crick and J. H. White, Supercoiled DNA, Scientific American 243, No. 1, 118-133 (1980)
  • [5] A.-L. Cauchy, Mémoire sur les dilatations, les condensations et les rotations produits par un changement de forme dans un système de points matériels, Ex. d'An. Phys. Math. 2, 302-330 (1841) in Oeuvres (2) 12, 343-377
  • [6] J. L. Ericksen and C. Truesdell, Exact theory of stress and strain in rods and shells, Arch. Rational Mech. Anal. 1, 295-323 (1958) MR 0099135
  • [7] F. B. Fuller, The writhing number of a space curve, Proc. Nat. Acad. Sci. U.S.A. 68, 815-819 (1971) MR 0278197
  • [8] C. F. Gauss, Zur mathematischen Theorie der electrodynamischen Wirkungen, in Ges. Werke, Bd. V, 605 (1833)
  • [9] K. Kovári, Räumliche Verzweigungsprobleme des dünnen elastischen Stabes mit endlichen Verformungen, Ing. Arch. 37, 393-416 (1969)
  • [10] A. E. H. Love, A treatise on the mathematical theory of elasticity, first edn., Cambridge Univ. Press; 1892; fourth edn., 1927
  • [11] J. H. Maddocks, dissertation, Univ. of Oxford, 1981
  • [12] J. Nečas, Les méthodes directes en theórie des équations elliptiques, Masson, 1967
  • [13] J. Pierce and A. P. Whitman, Topological properties of the manifolds of configurations for several simple deformable bodies, Arch. Rat. Mech. Anal. 74, 101-113 (1980) MR 573302
  • [14] A.-J.-C. B de St. Venant, Mémoire sur le calcul de la résistance et de la flexion des pièces solides à simple ou à double courbure, en prenant simultanément en considération les divers efforts auxquels elles peuvent ětre soumises dan tous les sens, C. R. Acad. Sci. Paris 17, 942-954, 1020-1031 (1843)
  • [15] A.-J.-C. B de St. Venant, Note sur l'état d'équilibre d'une verge élastique à double courbure lorsque les déplacements éprouvés par ses points, par suite de l'action des forces qui la sollicitent, ne sont pas trés-petits, C. R. Acad. Sci. Paris 19, 36-44, 181-187 (1845)
  • [16] M. Spivak, A comprehensive introduction to differential geometry, Vol. I, Publish or Perish, Boston, 1970 MR 532830
  • [17] C. Truesdell and W. Noll, The non-linear field theories of mechanics, Handbuch der Physik III/3, Springer-Verlag, (1965) MR 0193816
  • [18] C. Truesdell and R. A. Toupin, The classical field theories, Handbuch der Physik III/1, Springer-Verlag (1960) MR 0118005

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73K05, 73C99

Retrieve articles in all journals with MSC: 73K05, 73C99


Additional Information

DOI: https://doi.org/10.1090/qam/652052
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society