Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Near critical free surface flow past an obstacle


Author: Susan L. Cole
Journal: Quart. Appl. Math. 41 (1983), 301-309
MSC: Primary 76B15
DOI: https://doi.org/10.1090/qam/721420
MathSciNet review: 721420
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper describes the nonlinear effects produced by arbitrarily small bumps in two-dimensional free surface flows with Fraude numbers close to 1$ ^{+}$ . These effects are determined by asymptotically matching (approximate) solutions to the ideal flow equations.


References [Enhancements On Off] (What's this?)

  • [1] Kelvin, On stationary waves in flowing water, Mathematical and Physical Papers, Vol. IV, Cambridge Press, 270-302, 1910
  • [2] Julian D. Cole, Limit process expansions and approximate equations, Singular perturbations and asymptotics (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1980) Publ. Math. Res. Center Univ. Wisconsin, vol. 45, Academic Press, New York-London, 1980, pp. 19–40. MR 606034
  • [3] N. N. Mosieev, On the Non-uniqueness of the Possible Forms of Steady Flows of a Heavy Fluid for Froude Numbers Close to 1, P.M.M. 21 860-864 (1957)
  • [4] I. G. Filippov, Solution of the problem of the motion of a vortex under the surface of a fluid, for Froude numbers near unity, J. Appl. Math. Mech. 24 (1960), 698–716. MR 0128208, https://doi.org/10.1016/0021-8928(60)90176-3

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76B15

Retrieve articles in all journals with MSC: 76B15


Additional Information

DOI: https://doi.org/10.1090/qam/721420
Article copyright: © Copyright 1983 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website