Buckling problems in finite plane elasticity-harmonic materials

Authors:
Chien H. Wu and Guang Zhong Cao

Journal:
Quart. Appl. Math. **41** (1984), 461-474

MSC:
Primary 73H05

DOI:
https://doi.org/10.1090/qam/724057

MathSciNet review:
724057

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Bucklings of biaxially deformed annular, rectangular and arbitrary regions are considered. It is found that for many different configurations the buckling conditions are governed by the same equation , where is merely a material function. Furthermore, the buckling solutions are completely unrelated to the buckling loads.

**[1]**M. A. Biot,*Mechanics of incremental deformations*, Wiley, 1965 MR**0185873****[2]**C. H. Wu,*Plane-strain buckling of a crack in a harmonic solid subjected to crack-parallel compression*, J. Appl. Mech.**46**, 597-604 (1979)**[3]**C. H. Wu,*Plane-strain buckling of cracks in incompressible elastic solids*, J. Elasticity**10**, 163-177 (1980) MR**576165****[4]**F. John,*Plane-strain problems for a perfectly elastic material of harmonic type*, Comm. Pure Appl. Math.**13**, 239-296 (1960) MR**0118022****[5]**J. K. Knowles and E. Sternberg,*On the singularity induced by certain mixed boundary conditions in linearized and nonlinear elastostatics*, Internat. J. Solids Struc.**11**, 1173-1201 (1975) MR**0388930****[6]**J. K. Knowles and E. Sternberg,*On the failure of ellipticity of the equations for finite elastostatic plane strains*, Arch. Rational Mech. Anal.**63**, 321-336 (1977) MR**0431861****[7]**J. K. Knowles and E. Sternberg,*An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack*, J. Elasticity**3**, 67-107 (1973) MR**0475148****[8]**R. S. Rivlin,*Stability of pure homogeneous deformations of an elastic cube under dead loading*, Quart. Appl. Math.**32**, 265-271 (1974)**[9]**C. B. Sensenig,*Instability of thick elastic solids*, Comm. Pure Appl. Math.**17**, 451-491 (1964) MR**0169453****[10]**J. J. Stoker,*Topics on nonlinear elasticity*, Lecture Notes, Courant Inst. Math. Sci., New York University, 1964**[11]**E. Bromberg,*Buckling of a very thick rectangular block*, Comm. Pure Appl. Math.**23**, 511-528 (1970) MR**0270598****[12]**R. S. Rivlin,*Large elastic deformations of isotropic materials*. II.*Some uniqueness theorems for pure homogeneous deformation*, Philos. Trans. Roy. Soc. London Ser. A**240**, 491-508 (1948) MR**0026534****[13]**K. N. Sawyers,*Stability of an elastic cube under dead loading*, Internat. J. Non-linear Mech.**11**, 11-23 (1976)**[14]**K. N. Sawyers,*Material stability and bifurcation in finite elasticity*, Finite Elasticity, AMD**27**, ASME, 1977**[15]**E. J. Brunelle,*Surface instability due to initial compressive stress*, Bulletin of the Seismological Society of America**63**, 1885-1893 (1973)**[16]**J. W. Hutchinson and V. Tvergaard,*Surface instabilities on statically strained plastic solids*, Internat. J. Mech. Sci.**22**, 339-354 (1980)**[17]**J. F. Dorris and S. Nemat-Nasser,*Instability of a layer on a half space*, J. Appl. Mech.**102**, 304-312 (1980)**[18]**N. Triantafyllidis and R. Abeyaratne,*Instabilities of a finitely deformed fiber reinforced elastic material*, to be published**[19]**J. B. Keller and S. Antman,*Bifurcation theory and nonlinear eigenvalue problems*, Benjamin, New York, 1969 MR**0241213**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73H05

Retrieve articles in all journals with MSC: 73H05

Additional Information

DOI:
https://doi.org/10.1090/qam/724057

Article copyright:
© Copyright 1984
American Mathematical Society