Inequalities and monotonicity results for zeros of modified Bessel functions of purely imaginary order

Author:
Andrea Laforgia

Journal:
Quart. Appl. Math. **44** (1986), 91-96

MSC:
Primary 33A40; Secondary 34C10

DOI:
https://doi.org/10.1090/qam/840446

MathSciNet review:
840446

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let and denote the th positive zeros, in decreasing order, of the modified Bessel function of purely imaginary order and of its derivative , respectively. We show that for and and and decrease as increases. Some related results are mentioned for the zeros of and the chain of inequalities is established.

**[1]**M. Abramowitz and I. A. Stegun, eds.,*Handbook of mathematical functions*, Applied Mathematics Series**55**, National Bureau of Standards, Washington, 1964**[2]**S. Ahmed, A. Laforgia and M. E. Muldoon,*On the spacing of the zeros of some classical orthogonal polynomials*, J. London Math. Soc. (2)**25**, 246-252 (1982) MR**653383****[3]**Á. Elbert and A. Laforgia,*Some monotonicity properties of the zeros of ultraspherical polynomials*, Acta Math. Hungar. (to appear) MR**858393****[4]**E. M. Ferreira and J. Sesma,*Zeros of modified Hankel functions*, Numer. Math.**16**, 278-284 (1970) MR**0271418****[5]**A. Gray, G. B. Mathews and T. M. Macrobert,*A Treatise on Bessel Functions and their Applications to Physics*, Macmillan, London, 1952**[6]**E. L. Ince,*Ordinary differential equations*, Longmans, London, 1927; reprinted, Dover, New York, 1944 MR**0010757****[7]**A. Laforgia,*Sturm theory for certain classes of Sturm-Liouville equations and Turánians and Wronskians for the zeros of derivative of Bessel functions*, Indag. Math.**44**, 295-301 (1982) MR**674902****[8]**J. T. Lewis and M. E. Muldoon,*Monotonicity and convexity properties of zeros of Bessel functions*, SIAM J. Math. Anal.**8**, 171-178 (1977) MR**0437823****[9]**L. Lorch,*Elementary comparison techniques for certain classes of Sturm-Liouville equations, Differential Equations*, Proc. Intern. Conf., Uppsala, 1977, Sympos. Univ. Upsaliensis Ann. Quingentesimum Celebrantis**7**, Almqvist and Wiksell, Stockholm, 1977, pp. 125-133 MR**0492536****[10]**G. Szegö,*Orthogonal Polynomials*, Amer. Math. Soc. Colloq. Publ.**23**, 4th ed., Amer. Math. Soc., Providence, R. I., 1975**[11]**G. Szegö and P. Turán,*On the monotone convergence of certain Riemann Sums*, Publ. Math. Debrecen**8**, 326-335 (1961) MR**0137818****[12]**G. N. Watson,*A Treatise on the Theory of Bessel functions*, 2nd ed., Cambridge University Press, Cambridge, England, 1944 MR**0010746**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
33A40,
34C10

Retrieve articles in all journals with MSC: 33A40, 34C10

Additional Information

DOI:
https://doi.org/10.1090/qam/840446

Article copyright:
© Copyright 1986
American Mathematical Society