Rotational-translational addition theorems for scalar spheroidal wave functions

Authors:
R. H. MacPhie, J. Dalmas and R. Deleuil

Journal:
Quart. Appl. Math. **44** (1987), 737-749

MSC:
Primary 33A55

DOI:
https://doi.org/10.1090/qam/872824

MathSciNet review:
872824

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Rotational-translational addition theorems for the scalar spheroidal wave function , with , are deduced. This permits one to represent the scalar spheroidal wave function, associated with one spheroidal coordinate system centered at its local origin , by an addition series of spheroidal wave functions associated with a second rotated and translated system , centered at . Such theorems are necessary in the rigorous analysis of radiation and scattering by spheroids with arbitrary spacings and orientations.

**[1]**Bernard Friedman and Joy Russek,*Addition theorems for spherical waves*, Quart. Appl. Math.**12**(1954), 13–23. MR**0060649**, https://doi.org/10.1090/S0033-569X-1954-60649-8**[2]**Seymour Stein,*Addition theorems for spherical wave functions*, Quart. Appl. Math.**19**(1961), 15–24. MR**0120407**, https://doi.org/10.1090/S0033-569X-1961-0120407-5**[3]**Orval R. Cruzan,*Translational addition theorems for spherical vector wave functions.*, Quart. Appl. Math.**20**(1962/1963), 33–40. MR**0132851**, https://doi.org/10.1090/S0033-569X-1962-0132851-2**[4]**J. Bruning and Y. T. Lo,*Multiple scattering of EM waves by spheres, part I and part II*, IEEE Trans.**AP-19**, 378-400 (1971)**[5]**Bateshwar P. Sinha and Robert H. Macphie,*Translational addition theorems for spheroidal scalar and vector wave functions*, Quart. Appl. Math.**38**(1980/81), no. 2, 143–158. MR**580875**, https://doi.org/10.1090/S0033-569X-1980-0580875-9**[6]**J. Dalmas and R. Deleuil,*Diffusion multiple des ondes électromagnétiques par des ellipsoïdes de révolution allongés*. Opt. Acta**29**, 1117-1131 (1982)**[7]**Jeannine Dalmas and Roger Deleuil,*Translational addition theorems for prolate spheroidal vector wave functions 𝑀^{𝑟} and 𝑁^{𝑟}*, Quart. Appl. Math.**44**(1986), no. 2, 213–222. MR**856176**, https://doi.org/10.1090/S0033-569X-1986-0856176-1**[8]**B. P. Sinha and R. H. MacPhie,*Electromagnetic plane wave scattering by a system of two parallel conducting prolate spheroids*, IEEE Trans.**AP-31**, 294-304 (1983)**[9]**J. Dalmas and R. Deleuil,*Multiple scattering of electromagnetic waves from two infinitely conducting prolate spheroids which are centered in a plane perpendicular to their axes of revolution*, Radio Sci.**20**, 575-581 (1985)**[10]**B. P. Sinha and R. H. MacPhie,*Mutual admittance characteristics for two-element parallel prolate spheroidal antenna systems*, IEEE Trans.**AP-33**, 1255-1263 (1985)**[11]**Carson Flammer,*Spheroidal wave functions*, Stanford University Press, Stanford, California, 1957. MR**0089520****[12]**A. R. Edmonds,*Angular momentum in quantum mechanics*, Investigations in Physics, Vol. 4, Princeton University Press, Princeton, N.J., 1957. MR**0095700****[13]**J. A. Stratton,*Electromagnetic theory*, McGraw-Hill, New York (1941)**[14]**M. E. Rose,*Elementary theory of angular momentum*, Wiley, New York (1967)**[15]**D. M. Brink and G. R. Satchler,*Angular momentum*, Clarendon, Oxford (1962)**[16]**A. Erdelyi,*Higher transcendental functions*, McGraw-Hill, New York (1953)**[17]**M. Abramowitz and I. Stegun,*Handbook of mathematical functions*, Dover, New York (1965)**[18]**I. M. Gel′fand and Z. Ya. Šapiro,*Representations of the group of rotations of 3-dimensional space and their applications*, Amer. Math. Soc. Transl. (2)**2**(1956), 207–316. MR**0076290****[19]**S. L. Altmann and C. J. Bradley,*A note on the calculation of the matrix elements of the rotation group.*, Philos. Trans. Roy. Soc. London Ser. A**255**(1963), 193–198. MR**0148215**, https://doi.org/10.1098/rsta.1963.0001

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
33A55

Retrieve articles in all journals with MSC: 33A55

Additional Information

DOI:
https://doi.org/10.1090/qam/872824

Article copyright:
© Copyright 1987
American Mathematical Society