Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Supercooling and superheating effects in heterogeneous systems


Author: A. Visintin
Journal: Quart. Appl. Math. 45 (1987), 239-263
MSC: Primary 80A20
DOI: https://doi.org/10.1090/qam/895096
MathSciNet review: 895096
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the model for phase transitions in binary systems based on Fourier's and Fick's laws, the interface equilibrium condition $ \theta = w$, relating the temperature $ \theta $ and the chemical activity $ w$, is here replaced by a relaxation dynamics for the liquid concentration $ \chi $:

$\displaystyle \frac{{\partial \chi }}{{\partial t}} + {\tilde H^{ - 1}}\left( \chi \right) = \beta \left( {\theta ,w} \right)$

( $ {\tilde H^{ - 1}}$: inverse of the Heaviside graph); here $ \beta \in {C^0}\left( {{R^2}} \right)$ and $ sign\beta \left( {\theta ,w} \right) = sign\left( {\theta - w} \right)$. In the case of a single dimension of space, with an interface $ x = s\left( t \right)$, a different dynamics can be considered:

$\displaystyle s'\left( t \right) = \beta \left( {\theta \left( {s\left( t \right),t} \right),w\left( {s\left( t \right),t} \right)} \right)$

.

References [Enhancements On Off] (What's this?)

  • [1] G. Astarita and G. C. Sarti, A class of mathematical models for sorption of swelling solvents in glassy polymers, Polymer Eng. Science 18, 388-395 (1978)
  • [2] A. Bermudez and C. Saguez, Mathematical formulation and numerical solution of an alloy solidification problem in [12]
  • [3] B. Boley, An applied overview of moving boundaries, in [31]
  • [4] John R. Cannon, James C. Cavendish, and Antonio Fasano, A free boundary-value problem related to the combustion of a solid, SIAM J. Appl. Math. 45 (1985), no. 5, 798–809. MR 804007, https://doi.org/10.1137/0145047
  • [5] B. Chalmers, Principles of solidification, Krieger, New York (1977)
  • [6] John Crank, Free and moving boundary problems, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1984. MR 776227
    John Crank, Free and moving boundary problems, The Clarendon Press, Oxford University Press, New York, 1987. MR 891186
  • [7] A. B. Crowley, Numerical solution of alloy solidification problems revisited, in A. Bossavit, A. Damlamian, M. Fremond (editors), Free boundary problems: applications and theory, vols. III, IV, Pitman, London (1985)
  • [8] A. B. Crowley and J. R. Ockendon, On the numerical solution of an alloy solidification problem, Internat. J. Heat Mass Transfer 22, 941-946 (1979)
  • [9] J. D. P. Donnelly, A model for nonequilibrium thermodynamic processes involving phase changes, J. Inst. Math. Appl. 24 (1979), no. 4, 425–438. MR 556152
  • [10] C. M. Elliott and J. R. Ockendon, Weak and variational methods for moving boundary problems, Research Notes in Mathematics, vol. 59, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650455
  • [11] A. Fasano, C. Meyer, and M. Primicerio, On a problem in polymer industry: theoretical and numerical investigation, to appear in SIAM J.
  • [12] Antonio Fasano and Mario Primicerio (eds.), Free boundary problems: theory and applications. Vol. I, II, Research Notes in Mathematics, vol. 78, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1983. MR 714899
  • [13] G. J. Fix, Numerical methods for alloy solidification problems in [31]
  • [14] G. J. Fix, Phase field models for free boundary problems, in [12]
  • [15] M. C. Flemings, Solidification processing, McGraw-Hill, New York (1974)
  • [16] Michel Frémond and Augusto Visintin, Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 301 (1985), no. 18, 1265–1268 (French, with English summary). MR 880589
  • [17] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969 (French). MR 0259693
  • [18] Stephan Luckhaus and Augusto Visintin, Phase transition in multicomponent systems, Manuscripta Math. 43 (1983), no. 2-3, 261–288. MR 707047, https://doi.org/10.1007/BF01165833
  • [19] E. Magenes (editor), Free boundary problems, Proceedings of a congress held in Pavia, Sept.--Oct. 1979, Ist. Naz. Alta Matem., Roma (1980)
  • [20] J. R. Ockendon and W. R. Hodgkins (editors), Moving boundary problems in heat flow and diffusion, Clarendon Press, Oxford (1975)
  • [21] L. I. Rubenšteĭn, The Stefan problem, American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by A. D. Solomon; Translations of Mathematical Monographs, Vol. 27. MR 0351348
  • [22] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
    Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
  • [23] C. Verdi and A. Visintin, Numerical analysis of the multidimensional Stefan problem with supercooling and superheating, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 3, 795–814 (English, with Italian summary). MR 916294
  • [24] Augusto Visintin, Stefan problem with phase relaxation, IMA J. Appl. Math. 34 (1985), no. 3, 225–245. MR 804824, https://doi.org/10.1093/imamat/34.3.225
  • [25] A. Visintin, Stefan problem with surface tension, Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche [Institute of Numerical Analysis of the National Research Council], vol. 424, Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche, Pavia, 1984. MR 775503
  • [26] A. Visintin, Models for supercooling and superheating effects, Free boundary problems: applications and theory, Vol. III (Maubuisson, 1984) Res. Notes in Math., vol. 120, Pitman, Boston, MA, 1985, pp. 200–207. MR 863171
  • [27] A. Visintin, Supercooling and superheating effects in phase transitions, IMA J. Appl. Math. 35 (1985), no. 2, 233–256. Special issue: IMA conference on crystal growth (Oxford, 1985). MR 839201, https://doi.org/10.1093/imamat/35.2.233
  • [28] A. Visintin, Stefan problem with a kinetic condition at the free boundary, Ann. Mat. Pura Appl. (4) 146 (1987), 97–122. MR 916689, https://doi.org/10.1007/BF01762361
  • [29] A. Visintin, Coupled thermic and electromagnetic evolution in a ferromagnetic body, Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche [Institute of Numerical Analysis of the National Research Council], vol. 436, Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche, Pavia, 1984. MR 778561
  • [30] R. E. White, The binary alloy problem: existence, uniqueness, and numerical approximation, SIAM J. Numer. Anal. 22 (1985), no. 2, 205–244. MR 781317, https://doi.org/10.1137/0722014
  • [31] David George Wilson, Alan D. Solomon, and Paul T. Boggs (eds.), Moving boundary problems, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0466887

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80A20

Retrieve articles in all journals with MSC: 80A20


Additional Information

DOI: https://doi.org/10.1090/qam/895096
Article copyright: © Copyright 1987 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website