Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Quasi-transonic flow past delta wings

Author: Gilberto Schleiniger
Journal: Quart. Appl. Math. 45 (1987), 265-277
DOI: https://doi.org/10.1090/qam/99612
MathSciNet review: QAM99612
Full-text PDF

Abstract | References | Additional Information

Abstract: Linearized supersonic theory for flows past delta wings must be corrected for the cases of wing sweepback angles close to the Mach angle. Results of calculations based on a local transonic expansion valid near the leading edge are presented.

References [Enhancements On Off] (What's this?)

  • [1] Julian D. Cole, Asymptotics and numerics, Transactions of the first army conference on applied mathematics and computing (Washington, D.C., 1983) ARO Rep., vol. 84, U.S. Army Res. Office, Research Triangle Park, NC, 1984, pp. 1–11. MR 741339
  • [2] Symposium transsonicum, International Union of Theoretical and Applied Mechanics, Aachen, Sept. 3-7, vol. 1962, Springer-Verlag, Berlin, 1964 (German). MR 0195346
  • [3] P. A. Lagerstrom, Linearized supersonic theory of conical wings, NACA TN 1685 (1950)
  • [4] H. W. Liepmann and A. Roshko, Elements of gasdynamics, Galcit aeronautical series, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1957. MR 0092515
  • [5] E. S. Love, Investigations at supersonic speeds of 22 triangular wings representing two airfoil sections for each of 11 apex angles, NACA REPORT 1238 (1949)
  • [6] E. M. Murman and J. D. Cole, Calculations of plane steady transonic flows, AIAA J. 9, 114-121 (1971)
  • [7] E. M. Murman, Analysis of embedded shock waves calculated by relaxation methods, AIAA J. 12 (5), 626-633 (1974)
  • [8] Allen E. Puckett, Supersonic wave drag of thin airfoils, J. Aeronaut. Sci. 13 (1946), 475–484. MR 0017095

Additional Information

DOI: https://doi.org/10.1090/qam/99612
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society