Complete solutions of a coupled system of partial differential equations arising in thermoelasticity

Author:
D. S. Chandrasekharaiah

Journal:
Quart. Appl. Math. **45** (1987), 471-480

MSC:
Primary 73C25; Secondary 73U05

DOI:
https://doi.org/10.1090/qam/910454

MathSciNet review:
910454

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Three general, complete solutions of a coupled hyperbolic or hyperbolic-parabolic system of two second-order linear partial differential equations are presented. The system includes among its particular cases the governing field equations of the conventional as well as generalized thermoelasticity theories. The solutions obtained are analogous to the Lamé, Papkovitch, and Galerkin solutions in classical elasticity. The interrelationships among the solutions are also exhibited. Some solutions obtained in earlier works are deduced as special cases of the unified solutions obtained here.

**[1]**A. E. Green and K. A. Lindsay,*Thermoelasticity*, J. Elasticity**2**, 1-7 (1972)**[2]**A. E. Green,*A note on linear thermoelasticity*, Mathematika**19**, 69-75 (1972)**[3]**D. S. Chandrasekharaiah,*Wave propagation in a thermoelastic half-space*, Indian J. Pure Appl. Math.**12**(1981), no. 2, 226–241. MR**605554****[4]**H. W. Lord and Y. Shulman,*A generalized dynamical theory of thermoelasticity*, J. Mech. Phys. Solids**15**, 299-309 (1967)**[5]**D. S. Chandrasekharaiah,*On generalised thermoelastic wave propagation*, Proc. Indian Acad. Sci. Sect. A Math. Sci.**89**(1980), no. 1, 43–52. MR**573384****[6]**M. A. Biot,*Thermoelasticity and irreversible thermodynamics*, J. Appl. Phys.**27**(1956), 240–253. MR**0077441****[7]**P. Chadwick,*Thermoelasticity. The dynamical theory*, Progress in solid mechanics, Vol. 1, North-Holland Publishing Co., Amsterdam, 1960, pp. 263–328. MR**0113406****[8]**D. E. Carlson,*Linear Thermoelasticity*, Encyclopedia of Physics, Vol. VI a/2, Springer-Verlag, New York, 1972**[9]**D. S. Chandrasekharaiah,*Thermoelasticity with second sound--A review*, Appl. Mech. Rev.**39**, 355-376 (1986)**[10]**I. S. Sokolnikoff,*Mathematical theory of elasticity*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. 2d ed. MR**0075755****[11]**M. E. Gurtin,*The linear theory of elasticity*, Encyclopedia of Physics, Vol VI a/2, Springer-Verlag, New York, 1972**[12]**H. Deresiewicz,*Solution of the equations of thermoelasticity*, Proceedings of the Third U.S. National Congress of Applied Mechanics, Brown University, Providence, R.I., June 11-14, 1958, American Society of Mechanical Engineers, New York, 1958, pp. 287–291. MR**0102260****[13]**H. Zorski,*Singular solutions for thermoelastic media*, Bull. Acad. Poln. Sci. Techn.**6**, 331-339 (1958)**[14]**H. B. Phillips,*Vector Analysis*, John Wiley, New York, 1933**[15]**E. Sternberg and E. L. McDowell,*On the steady-state thermoelastic problem for the half-space*, Quart. Appl. Math.**14**(1957), 381–398. MR**0087367**, https://doi.org/10.1090/S0033-569X-1957-87367-8**[16]**J. L. Nowinski,*Theory of thermoelasticity with applications*, p. 363, Sijthoff-Noordhoff, Alphen Aan Den Rijn, 1978**[17]**A. Verruijt,*The completeness of Biot’s solution of the coupled thermoelastic problem*, Quart. Appl. Math.**26**(1968/1969), 485–490. MR**0239802**, https://doi.org/10.1090/S0033-569X-1969-0239802-7**[18]**W. Nowacki,*Dynamic problems of Thermoelasticity*, Noordhoff, Leyden, pp. 26-29, 1975

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73C25,
73U05

Retrieve articles in all journals with MSC: 73C25, 73U05

Additional Information

DOI:
https://doi.org/10.1090/qam/910454

Article copyright:
© Copyright 1987
American Mathematical Society