A hyperbolic Stefan problem

Authors:
R. E. Showalter and N. J. Walkington

Journal:
Quart. Appl. Math. **45** (1987), 769-781

MSC:
Primary 35R35; Secondary 35L99, 80A20

DOI:
https://doi.org/10.1090/qam/917025

MathSciNet review:
917025

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A free-boundary problem of Stefan type is presented under constitutive assumptions on flux and energy which contain an effective time delay. This contains the hyperbolic telegraphers equation and, hence, has the feature that propagation speed of disturbances is bounded. With the appropriate physically consistent condition on the interface this is shown to lead to a well-posed weak formulation of the problem.

**[1]**K. Beckurtz and K. Wirtz,*Neutron Physics*, Springer-Verlag, New York, 1964**[2]**D. Bogy and P. Naghdi,*On heat conduction and wave propagation in rigid solids*, Jour. of Math. Phys.**11**, 917-923 (1970)**[3]**J. Breezel and E. Nolan,*Non-Fourier effects in the transmission of heat*, Proc. 6th Conf. on Thermal Conductivity, Dayton, 237-254, October 1966**[4]**J. Brown, D. Chung, and P. Matthews,*Heat pulses at low temperature*, Phys. Letters**21**, 241-243 (1966)**[5]**C. Cattaneo,*Sulla conduzione del calore*, Atti Sem. Mat. Fis. Univ. Modena**3**, 3-21 (1948/49) MR**0032898****[6]**M. Chester,*Second sound in solids*, Phys. Rev.**131**, 2013-2015 (1963)**[7]**L. DeSocio and G. Gualtieri,*A hyperbolic Stefan problem*, Quart. Appl. Math.**41**, 253-259 (1983) MR**719509****[8]**M. Gurtin and A. Pipkin,*A general theory of heat conduction with finite wave speeds*, Arch. Rat. Mech. Anal.**31**, 113-126 (1968) MR**1553521****[9]**J. C. Maxwell,*On the dynamical theory of gases*, Phil Trans. Royal Society London**157**, 49-88 (1867)**[10]**P. Morse and H. Feshback,*Methods of Theoretical Physics*, McGraw-Hill, New York, p. 865, 1953**[11]**M. Sadd and J. Didlake,*Non-Fourier melting of a semi-infinite solid*, Jour. of Heat Transfer**99**, 25-28 (1977)**[12]**A. Solomon, V. Alexiades, D. Wilson, and J. Drake,*The formulation of a hyperbolic Stefan problem*, Quart. Appl. Math., to appear MR**814228****[13]**A. Solomon, V. Alexiades, D. Wilson, and J. Greenberg,*A hyperbolic Stefan problem with discontinuous temperature*, to appear**[14]**P. Vernotte,*Les paradoxes de la théorie continue de l'equation de la chaleur*, Comp. Rend.**246**, 3154-3155 (1958) MR**0095679**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35R35,
35L99,
80A20

Retrieve articles in all journals with MSC: 35R35, 35L99, 80A20

Additional Information

DOI:
https://doi.org/10.1090/qam/917025

Article copyright:
© Copyright 1987
American Mathematical Society