Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Travelling waves in nonlinearly viscoelastic media and shock structure in elastic media


Authors: Stuart S. Antman and Reza Malek-Madani
Journal: Quart. Appl. Math. 46 (1988), 77-93
MSC: Primary 73D15; Secondary 35L67, 73D40, 73F99
DOI: https://doi.org/10.1090/qam/934683
MathSciNet review: 934683
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. S. Antman, Material constraints in continuum mechanics, Atti Acc. Naz. Lincei, Rendiconti, Cl. Sci. fis. mat. nat. Ser. VII, 70, 256-264 (1982)
  • [2] S. S. Antman and Zhong Heng Guo, Large shearing oscillations of incompressible nonlinearly elastic bodies, J. Elasticity 14, 249-262 (1984) MR 760032
  • [3] S. S. Antman and R. Malek-Madani, Dissipative mechanisms, in Metastability and incompletely posed problems, edited by S. S. Antman, J. L. Ericksen, D. Kinderlehrer, I. Müller, IMA volumes in Mathematics and its Applications, Vol. 3, Springer-Verlag, 1-16, 1987 MR 870005
  • [4] C. C. Conley and J. A. Smoller, Shock waves as limits of progressive wave solutions of higher-order equations, II, Comm. Pure Appl. Math. 25, 131-146 (1972) MR 0306721
  • [5] C. C. Conley and J. A. Smoller, Topological methods in the theory of shock waves, Proc. Symp. Pure Math. 23, 293-302 (1973) MR 0340836
  • [6] C. Dafermos, The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity, J. Diff. Eqs. 6, 71-86 (1969) MR 0241831
  • [7] C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal. 13, 397-408 (1982) MR 653464
  • [8] R. DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. Journal 28, 137-188 (1979) MR 523630
  • [9] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, 1964 MR 0181836
  • [10] J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rat. Mech. Anal. 95, 325-344 (1986) MR 853782
  • [11] R. Hagan and M. Slemrod, The viscosity-capillarity admissibility criterion for shocks and phase transitions, Arch. Rat. Mech. Anal. 83, 333-361 (1983) MR 714979
  • [12] Ya. I. Kanel', On a model system of equations of one-dimensional gas motion, (in Russian), Diff. Urav. 4, 721-734. Engl. Trans., Diff. Eqs. 4, 374-380 (1968)
  • [13] B. Keyfitz and H. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Rat. Mech. Anal. 72, 219-241 (1980) MR 549642
  • [14] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs 23, Amer. Math. Soc., Providence, R.I., 1968 MR 0241822
  • [15] P. D. Lax, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math. 10, 537-566 (1957) MR 0093653
  • [16] T.-P. Liu, The Riemann problem for general systems of conservation laws, J. Diff. Eqs. 18 218-234 (1975) MR 0369939
  • [17] T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Memoirs of the AMS 328, 1985 MR 776475
  • [18] T.-P. Liu, Shock waves for compressible Navier-Stokes equations are stable, Comm. Pure Appl. Math. 39, 565-594 (1986) MR 849424
  • [19] R. C. MacCamy, Existence, uniqueness and stability of $ {u_{tt}} = \frac{\partial }{{\partial x}}\left( {\sigma \left( {{u_x}} \right) + \lambda \left( {{u_x}} \right){u_{xt}}} \right)$, Indiana Univ. Math. J. 20, 231-238 (1970) MR 0265790
  • [20] A. Majda and R. Pego, Stable viscosity matrices for systems of conservation laws, J. Diff. Eqs. 56, 229-262 (1985) MR 774165
  • [21] R. S. Rivlin and J. L. Ericksen, Stress-deformation relations for isotropic materials, J. Rat. Mech. Anal. 4, 323-425 (1955) MR 0068413
  • [22] M. Shearer, The Riemann problem for the planar motion of an elastic string, J. Diff. Eqs. 61, 149-163 (1986) MR 823399
  • [23] J. A. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, 1983 MR 1301779
  • [24] C. Truesdell and W. Noll, The non-linear field theories of mechanics, Handbuch der Physik III/3, Springer-Verlag, 1965 MR 0193816

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73D15, 35L67, 73D40, 73F99

Retrieve articles in all journals with MSC: 73D15, 35L67, 73D40, 73F99


Additional Information

DOI: https://doi.org/10.1090/qam/934683
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society