Some identities and the structure of in the Stroh formalism of anisotropic elasticity

Author:
T. C. T. Ting

Journal:
Quart. Appl. Math. **46** (1988), 109-120

MSC:
Primary 73C30

DOI:
https://doi.org/10.1090/qam/934686

MathSciNet review:
934686

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Stroh formalism of anisotropic elasticity leads to a real matrix **N** that can be composed from three real matrices . The eigenvalues and eigenvectors of **N** are all complex. New identities are derived that express certain combinations of the eigenvalues and eigenvectors in terms of the real matrices and the three real matrices **H, S, L** introduced by Barnett and Lothe. It is shown that the elements of and have simple expressions in terms of the reduced elastic compliances. We prove that is positive semidefinite and, with this property, we present a direct proof that **L** is positive definite.

**[1]**A. N. Stroh,*Dislocations and cracks in anisotropic elasticity*, Philos. Mag.**7**, 625-646 (1958) MR**0094961****[2]**A. N. Stroh,*Steady state problems in anisotropic elasticity*, J. Math. Phys.**41**, 77-103 (1962) MR**0139306****[3]**K. Malen and J. Lothe,*Explicit expressions for dislocation derivatives*, Phys. Status Solidi**39**, 287-296 (1970) MR**0297189****[4]**P. Chadwick and G. D. Smith,*Foundations of the theory of surface waves in anisotropic elastic materials*, Adv. Appl. Mech.**17**, 303-376 (1977)**[5]**D. M. Barnett and J. Lothe,*Synthesis of the sextic and the integral formalism for dislocation, Green's functions and surface waves in anisotropic elastic solids*, Phys. Norv.**7**, 13-19 (1973)**[6]**J. D. Eshelby, W. T. Read, and W. Shockley,*Anisotropic elasticity with applications to dislocation theory*, Acta Metall.**1**, 251-259 (1953)**[7]**T. C. T. Ting,*Explicit solution and invariance of the singularities at an interface crack in anisotropic composites*, Internat. J. Solids and Structures**22**, 965-983 (1986) MR**865545****[8]**P. Chadwick and T. C. T. Ting,*On the structure and invariance of the Barnett-Lothe tensors*, Quart. Appl. Math.**45**, 419-427 (1987) MR**910450****[9]**K. A. Ingebrigtsen and A. Tonning,*Elastic surface waves in crystals*, Phys. Rev.**184**, 942-951 (1969)**[10]**J. Lothe and D. M. Barnett,*On the existence of surface-wave solutions for anisotropic half-spaces with free surface*, J. Appl. Phys.**47**, 428-433 (1976)**[11]**H. O. K. Kirchner and J. Lothe,*On the redundancy of the N matrix of anisotropic elasticity*, Phil. Mag. A**53**, L7-L10 (1986)**[12]**T. C. T. Ting,*The critical angle of the anisotropic elastic wedge subject to uniform tractions*, J. Elasticity. In press. MR**965867****[13]**K. Nishioka and J. Lothe,*Isotropic limiting behavior of the six-dimensional formalism of anisotropic dislocation theory and anisotropic Green's function theory*. I.*Sum rules and their applications*, Phys. Status Solidi B**51**, 645-659 (1972)**[14]**D. J. Bacon, D. M. Barnett, and R. O. Scattergood,*The anisotropic continuum theory of lattice defects*, Progr. Mater. Sci.**23**51-262 (1978)**[15]**R. J. Asaro, J. P. Hirth, D. M. Barnett, and J. Lothe,*A further synthesis of sextic and integral theories for dislocations and line forces in anisotropic media*, Phys. Status Solidi B**60**, 261-271 (1973)**[16]**T. C. T. Ting,*Effects of change of reference coordinates on the stress analyses of anisotropic elastic materials*, Internat. J. Solids and Structures**18**, 139-152 (1982) MR**639099****[17]**S. A. Gundersen, D. M. Barnett, and J. Lothe,*Rayleigh wave existence theory. A supplementary remark*, Wave Motion**9**, 319-321 (1987) MR**896032**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73C30

Retrieve articles in all journals with MSC: 73C30

Additional Information

DOI:
https://doi.org/10.1090/qam/934686

Article copyright:
© Copyright 1988
American Mathematical Society