Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Expansion flows on walls with nonequilibrium condensation

Authors: Joseph H. Clarke and Can F. Delale
Journal: Quart. Appl. Math. 46 (1988), 121-143
MSC: Primary 76J99; Secondary 76J10, 76L05, 80A20
DOI: https://doi.org/10.1090/qam/934687
MathSciNet review: 934687
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The streamtube method for supersonic expansion flows on walls with nonequilibrium condensation is developed incorporating the radius dependence on the droplet growth rate. In the presence of an embedded, frozen, oblique shock wave arising from supercritical heat addition from condensation, the method is supplemented by the derived oblique shock relations, and the oblique shock location is determined by employing a shock fitting technique originally introduced by Barschdorff [11]. Some advantages of the proposed streamtube method are explored in comparison with the numerical method of characteristics.

References [Enhancements On Off] (What's this?)

  • [1] K. Oswatitsch, Z. Angew. Math. Mech. 22, 1 (1942)
  • [2] P. P. Wegener, Nonequilibrium flows, Vol. 1, Part 1, Marcel Dekker, New York and London, 1969
  • [3] G. Gyarmathy, in M. J. Moore and C. H. Sieverding (Eds.), Two-phase steam flow in turbines and separators, Hemisphere Pub. Corp., Washington and London, 1976
  • [4] F. Bartlmä, Proc. 11th Internat. Congr. Appl. Mech., Munich, 1964
  • [5] A. V. Kurshakov, G. A. Saltanov, and R. A. Tkalenko, Prikl. Mekh. Tekh. Phys. 5, 117 (1971)
  • [6] L. T. Smith, AIAA J. 9, 2035 (1971)
  • [7] L. M. Davydov, Fluid Mech., Soviet Res., Vol. 1, No. 1 (1972)
  • [8] J. P. Sislian and I. I. Glass, AIAA J. 14, 1731 (1976)
  • [9] P. A. Blythe and C. J. Shih, J. Fluid Mech. 76, 593 (1976)
  • [10] J. H. Clarke and C. F. Delale, Phys. Fluids 29 (5), 1398 (1986)
  • [11] D. Barschdorff, Forsch. Ingenieur Wes. 37, 146 (1971)
  • [12] J. H. Clarke and C. F. Delale, Phys. Fluids 29, 1414 (1986)
  • [13] Donald Greenspan, Discrete numerical methods in physics and engineering, Academic Press, Inc. [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974. Mathematics in Science and Engineering, Vol. 107. MR 0362905
  • [14] Gordon D. Smith, Numerical solution of partial differential equations, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1978. Finite difference methods; Oxford Applied Mathematics and Computing Science Series. MR 509636
  • [15] Peter D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math. 7 (1954), 159–193. MR 0066040, https://doi.org/10.1002/cpa.3160070112
  • [16] C. F. Delale, Ph.D. Thesis, Brown University (1983)
  • [17] W. G. Vincenti and C. H. Kruger, Jr., Introduction to physical gas dynamics, Wiley and Sons, New York, London and Sydney, 1965
  • [18] A. Ferri, Elements of aerodynamics for supersonic flows, Macmillan, New York, 1949
  • [19] H. W. Liepmann and A. Roshko, Elements of gasdynamics, Galcit aeronautical series, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1957. MR 0092515
  • [20] A. A. Pouring, Phys. Fluids 8, 1802 (1965)
  • [21] M. Volmer and A. Weber, Z. Physik Chem. A119, 227 (1926)
  • [22] J. Lothe and G. M. Pound, in A. C. Zettlemoyer (Ed.), Nucleation, Marcel Dekker, New York and London, 1969
  • [23] P. G. Hill, J. Fluid Mech. 25, 593 (1966)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76J99, 76J10, 76L05, 80A20

Retrieve articles in all journals with MSC: 76J99, 76J10, 76L05, 80A20

Additional Information

DOI: https://doi.org/10.1090/qam/934687
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society