Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the structure of equilibrium phase transitions within the gradient theory of fluids


Authors: Morton E. Gurtin and Hiroshi Matano
Journal: Quart. Appl. Math. 46 (1988), 301-317
MSC: Primary 49B21; Secondary 73G10, 76A02, 80A20
DOI: https://doi.org/10.1090/qam/950604
MathSciNet review: 950604
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand Math. Studies 2, Princeton, 1965 MR 0178246
  • [2] C. Bandle, Isoperimetric inequalities and applications, Pitman, Boston, 1980 MR 572958
  • [3] J. W. Cahn, On spinodal decomposition, Acta Met. 9, 795-801 (1961)
  • [4] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28, 258-267 (1958)
  • [5] J. W. Cahn and J. E. Hilliard, Spinodal decomposition: a reprise, Acta Met. 19, 151-161 (1971)
  • [6] A. P. Calderon, Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math. 80, 16-36 (1958) MR 0104925
  • [7] J. Carr, M. E. Gurtin, and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rat. Mech. Anal. 86, 317-351 (1984) MR 759767
  • [8] R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations 27, 266-273 (1978) MR 480282
  • [9] N. Chafee, Asymptotic behavior for solutions of a one-dimensional parabolic equation with homogeneous Neumann boundary conditions, J. Differential Equations 18, 111-134 (1975) MR 0369922
  • [10] E. Conway, D. Hoff, and J. Smoller, Large time behavior of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35, 1-16 (1978) MR 0486955
  • [11] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, 1984 MR 775683
  • [12] P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75, 449-476 (1953) MR 0058082
  • [13] S. Jimbo, Singular perturbations of domains and semilinear elliptic equations, J. Fac. Sci. Univ. Tokyo. To appear. MR 931442
  • [14] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Math. 1150, Springer-Verlag, Berlin, 1985 MR 810619
  • [15] B. Kawohl, On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems, Arch. Rat. Mech. Anal. 94, 227-243 (1986) MR 846062
  • [16] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci. 15, 401-454 (1979) MR 555661
  • [17] H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA 29, 401-441 (1982) MR 672070
  • [18] L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rat. Mech. Anal. 5, 286-292 (1960) MR 0117419
  • [19] J. S. Rowlinson, Translation of J. D. van der Waals' ``The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density,'' J. Statist. Phys. 20, 197-244 (1979) MR 523642
  • [20] J. D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density (in Dutch), Verh. Konink. Akad. Wetensch. Amsterdam (Sect. 1) Vol. 1, No. 8 (1893)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 49B21, 73G10, 76A02, 80A20

Retrieve articles in all journals with MSC: 49B21, 73G10, 76A02, 80A20


Additional Information

DOI: https://doi.org/10.1090/qam/950604
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society