On the structure of equilibrium phase transitions within the gradient theory of fluids

Authors:
Morton E. Gurtin and Hiroshi Matano

Journal:
Quart. Appl. Math. **46** (1988), 301-317

MSC:
Primary 49B21; Secondary 73G10, 76A02, 80A20

DOI:
https://doi.org/10.1090/qam/950604

MathSciNet review:
950604

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**S. Agmon,*Lectures on elliptic boundary value problems*, Van Nostrand Math. Studies 2, Princeton, 1965 MR**0178246****[2]**C. Bandle,*Isoperimetric inequalities and applications*, Pitman, Boston, 1980 MR**572958****[3]**J. W. Cahn,*On spinodal decomposition*, Acta Met.**9**, 795-801 (1961)**[4]**J. W. Cahn and J. E. Hilliard,*Free energy of a nonuniform system*. I.*Interfacial free energy*, J. Chem. Phys.**28**, 258-267 (1958)**[5]**J. W. Cahn and J. E. Hilliard,*Spinodal decomposition: a reprise*, Acta Met.**19**, 151-161 (1971)**[6]**A. P. Calderon,*Uniqueness in the Cauchy problem for partial differential equations*, Amer. J. Math.**80**, 16-36 (1958) MR**0104925****[7]**J. Carr, M. E. Gurtin, and M. Slemrod,*Structured phase transitions on a finite interval*, Arch. Rat. Mech. Anal.**86**, 317-351 (1984) MR**759767****[8]**R. G. Casten and C. J. Holland,*Instability results for reaction diffusion equations with Neumann boundary conditions*, J. Differential Equations**27**, 266-273 (1978) MR**480282****[9]**N. Chafee,*Asymptotic behavior for solutions of a one-dimensional parabolic equation with homogeneous Neumann boundary conditions*, J. Differential Equations**18**, 111-134 (1975) MR**0369922****[10]**E. Conway, D. Hoff, and J. Smoller,*Large time behavior of systems of nonlinear reaction-diffusion equations*, SIAM J. Appl. Math.**35**, 1-16 (1978) MR**0486955****[11]**P. Grisvard,*Elliptic problems in nonsmooth domains*, Pitman, Boston, 1984 MR**775683****[12]**P. Hartman and A. Wintner,*On the local behavior of solutions of non-parabolic partial differential equations*, Amer. J. Math.**75**, 449-476 (1953) MR**0058082****[13]**S. Jimbo,*Singular perturbations of domains and semilinear elliptic equations*, J. Fac. Sci. Univ. Tokyo. To appear. MR**931442****[14]**B. Kawohl,*Rearrangements and convexity of level sets in PDE*, Lecture Notes in Math. 1150, Springer-Verlag, Berlin, 1985 MR**810619****[15]**B. Kawohl,*On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems*, Arch. Rat. Mech. Anal.**94**, 227-243 (1986) MR**846062****[16]**H. Matano,*Asymptotic behavior and stability of solutions of semilinear diffusion equations*, Publ. Res. Inst. Math. Sci.**15**, 401-454 (1979) MR**555661****[17]**H. Matano,*Nonincrease of the lap-number of a solution for a one-dimensional parabolic equation*, J. Fac. Sci. Univ. Tokyo Sec. IA**29**, 401-441 (1982) MR**672070****[18]**L. E. Payne and H. F. Weinberger,*An optimal Poincaré inequality for convex domains*, Arch. Rat. Mech. Anal.**5**, 286-292 (1960) MR**0117419****[19]**J. S. Rowlinson,*Translation of J. D. van der Waals' ``The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density*,'' J. Statist. Phys.**20**, 197-244 (1979) MR**523642****[20]**J. D. van der Waals,*The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density*(in Dutch), Verh. Konink. Akad. Wetensch. Amsterdam (Sect. 1) Vol. 1, No. 8 (1893)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
49B21,
73G10,
76A02,
80A20

Retrieve articles in all journals with MSC: 49B21, 73G10, 76A02, 80A20

Additional Information

DOI:
https://doi.org/10.1090/qam/950604

Article copyright:
© Copyright 1988
American Mathematical Society