Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Asymptotics for a system of nonlinearly coupled wave equations with an application to the galloping oscillations of overhead transmission lines


Author: W. T. van Horssen
Journal: Quart. Appl. Math. 47 (1989), 197-219
MSC: Primary 35C20; Secondary 35L70
DOI: https://doi.org/10.1090/qam/998096
MathSciNet review: 998096
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper an asymptotic theory for a class of initial-boundary value problems for systems of weakly and nonlinearly coupled wave equations is presented. The theory implies the well-posedness of the problem in the classical sense and the asymptotic validity of formal approximations on long time scales.


References [Enhancements On Off] (What's this?)

  • [1] C. G. A. van der Beek and A. H. P. van der Burgh, On the periodic wind-induced vibrations of an oscillator with two degrees of freedom, Nieuw Arch. Wisk. 2, 207-225 (1987)
  • [2] J. G. Besjes, On the asymptotic methods for non-linear differential equations, J. Mécanique 8, 357-372 (1969) MR 0255915
  • [3] S. C. Chikwendu and J. Kevorkian, A perturbation method for hyperbolic equations with small non-linearities, SIAM J. Appl. Math. 22, 235-258 (1972) MR 0374635
  • [4] W. Eckhaus, New approach to the asymptotic theory of nonlinear oscillations and wave-propagation, J. Math. Anal. Appl. 49, 575-611 (1975) MR 0369839
  • [5] J. P. den Hartog, Mechanical vibrations, 4th ed., McGraw-Hill, New York, 1956
  • [6] W. T. van Horssen and A. H. P. van der Burgh, On initial-boundary value problems for weakly semi-linear telegraph equations. Asymptotic theory and application, SIAM J. Appl. Math. 48, 719-736 (1988) MR 953519
  • [7] W. T. van Horssen, An asymptotic theory for a class of initial-boundary value problems for weakly nonlinear wave equations with an application to a model of the galloping oscillations of overhead transmission lines, SIAM J. Appl. Math. 48, 1227-1243 (1988) MR 968827
  • [8] H. M. Irvine and T. K. Cauchey, The linear theory of free vibrations of a suspended cable, Proc. Roy. Soc. London Ser. A 341, 299-315 (1974)
  • [9] J. B. Keller and S. Kogelman, Asymptotic solutions of initial value problems for nonlinear partial differential equations, SIAM J. Appl. Math. 18, 748-758 (1970) MR 0262653
  • [10] J. Kevorkian and J. D. Cole, Perturbation methods in applied mathematics, Springer-Verlag, New York, 1981 MR 608029
  • [11] C. J. Myerscough, A simple model of the growth of wind-induced oscillations in overhead lines, J. Sound Vibration 28, 699-713 (1973)
  • [12] C. J. Myerscough, Further studies of the growth of wind-induced oscillations in overhead lines, J. Sound Vibration 39, 503-517 (1975)
  • [13] H. H. Ottens and R. K. Hack, Results of an exploratory study of the galloping oscillations of overhead transmission lines (in Dutch), Report NLR TR 80016 L of the National Aerospace Laboratory NLR, The Netherlands (1980)
  • [14] J. A. Sanders and F. Verhulst, Averaging methods in nonlinear dynamical systems, Appl. Math. Sci. 59, Springer-Verlag, New York, 1985 MR 810620
  • [15] A. Simpson, Wind-induced vibration of overhead power transmission lines, Sci. Prog. Oxford 68, 285-308 (1983)
  • [16] O. Vejvoda, Partial differential equations: time-periodic solutions, Martinus Nijhoff Publishers, The Hague, 1982

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35C20, 35L70

Retrieve articles in all journals with MSC: 35C20, 35L70


Additional Information

DOI: https://doi.org/10.1090/qam/998096
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society