Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Asymptotics for a system of nonlinearly coupled wave equations with an application to the galloping oscillations of overhead transmission lines


Author: W. T. van Horssen
Journal: Quart. Appl. Math. 47 (1989), 197-219
MSC: Primary 35C20; Secondary 35L70
DOI: https://doi.org/10.1090/qam/998096
MathSciNet review: 998096
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper an asymptotic theory for a class of initial-boundary value problems for systems of weakly and nonlinearly coupled wave equations is presented. The theory implies the well-posedness of the problem in the classical sense and the asymptotic validity of formal approximations on long time scales.


References [Enhancements On Off] (What's this?)

  • [1] C. G. A. van der Beek and A. H. P. van der Burgh, On the periodic wind-induced vibrations of an oscillator with two degrees of freedom, Nieuw Arch. Wisk. 2, 207-225 (1987)
  • [2] J. G. Besjes, On the asymptotic methods for non-linear differential equations, J. Mécanique 8 (1969), 357–372 (English, with French summary). MR 0255915
  • [3] S. C. Chikwendu and J. Kevorkian, A perturbation method for hyperbolic equations with small nonlinearities, SIAM J. Appl. Math. 22 (1972), 235–258. MR 0374635, https://doi.org/10.1137/0122025
  • [4] Wiktor Eckhaus, New approach to the asymptotic theory of nonlinear oscillations and wave-propagation, J. Math. Anal. Appl. 49 (1975), 575–611. MR 0369839, https://doi.org/10.1016/0022-247X(75)90200-0
  • [5] J. P. den Hartog, Mechanical vibrations, 4th ed., McGraw-Hill, New York, 1956
  • [6] W. T. van Horssen and A. H. P. van der Burgh, On initial boundary value problems for weakly semilinear telegraph equations. Asymptotic theory and application, SIAM J. Appl. Math. 48 (1988), no. 4, 719–736. MR 953519, https://doi.org/10.1137/0148041
  • [7] W. T. van Horssen, An asymptotic theory for a class of initial-boundary value problems for weakly nonlinear wave equations with an application to a model of the galloping oscillations of overhead transmission lines, SIAM J. Appl. Math. 48 (1988), no. 6, 1227–1243. MR 968827, https://doi.org/10.1137/0148075
  • [8] H. M. Irvine and T. K. Cauchey, The linear theory of free vibrations of a suspended cable, Proc. Roy. Soc. London Ser. A 341, 299-315 (1974)
  • [9] Joseph B. Keller and Stanley Kogelman, Asymptotic solutions of initial value problems for nonlinear partial differential equations, SIAM J. Appl. Math. 18 (1970), 748–758. MR 0262653, https://doi.org/10.1137/0118067
  • [10] J. Kevorkian and Julian D. Cole, Perturbation methods in applied mathematics, Applied Mathematical Sciences, vol. 34, Springer-Verlag, New York-Berlin, 1981. MR 608029
  • [11] C. J. Myerscough, A simple model of the growth of wind-induced oscillations in overhead lines, J. Sound Vibration 28, 699-713 (1973)
  • [12] C. J. Myerscough, Further studies of the growth of wind-induced oscillations in overhead lines, J. Sound Vibration 39, 503-517 (1975)
  • [13] H. H. Ottens and R. K. Hack, Results of an exploratory study of the galloping oscillations of overhead transmission lines (in Dutch), Report NLR TR 80016 L of the National Aerospace Laboratory NLR, The Netherlands (1980)
  • [14] J. A. Sanders and F. Verhulst, Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, vol. 59, Springer-Verlag, New York, 1985. MR 810620
  • [15] A. Simpson, Wind-induced vibration of overhead power transmission lines, Sci. Prog. Oxford 68, 285-308 (1983)
  • [16] O. Vejvoda, Partial differential equations: time-periodic solutions, Martinus Nijhoff Publishers, The Hague, 1982

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35C20, 35L70

Retrieve articles in all journals with MSC: 35C20, 35L70


Additional Information

DOI: https://doi.org/10.1090/qam/998096
Article copyright: © Copyright 1989 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website