Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Energy balance criteria for viscoelastic fracture


Authors: J. M. Golden and G. A. C. Graham
Journal: Quart. Appl. Math. 48 (1990), 401-413
MSC: Primary 73M25; Secondary 73B30, 73F15
DOI: https://doi.org/10.1090/qam/1074956
MathSciNet review: MR1074956
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An energy balance criterion of the Griffith type has been used to derive conditions that are valid, in the isothermal noninertial approximation, for the growth of cracks in viscoelastic bodies. These bodies are acted upon by general position and time-dependent load. The conditions have the same form as the instability conditions obtained for the corresponding problems in elasticity theory and, in particular, are independent of crack velocity. The analysis relies upon an exact calculation of the displacement and stress fields that is derived in the Appendix with the aid of extensions to viscoelasticity of the Kolosov-Muskhelishvili equations of elasticity theory.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Griffith, The phenomenon of rupture and flow in solids, Phil. Trans. Roy. Soc. A 221, 163-198 (1921)
  • [2] A. A. Griffith, The theory of rupture, Proc. 1st Intern. Congr. Appl. Mech., Delft, 1924. p. 55-63
  • [3] P. I. Vincent and K. V. Gotham, Effect of crack propagation velocity on the fracture energy of poly(methylmethacrylate), Nature 210, 1254 (1966)
  • [4] E. C. Francis, C. H. Carlton, and G. H. Lindsey, Viscoelastic fracture of solid propellants in pressurization loading conditions, J. Spacecraft 11, 691-696 (1974)
  • [5] W. G. Knauss, Fracture of solids possessing deformation rate sensitive material properties, The Mechanics of Fracture, AMD-Vol. 19, F. Erdogan (Editor), The American Society of Mechanical Engineers, New York, 1976, p. 69-103
  • [6] M. E. Gurtin, Thermodynamics and the cohesive zone in fracture, J. Appl. Math. Phys. (ZAMP) 30, 991-1003 (1979)
  • [7] J. R. Willis, Crack propagation is viscoelastic media, J. Mech. Phys. Solids 15, 229-240 (1967)
  • [8] B. V. Kostrov and L. V. Nikitin, Some general problems of mechanics of brittle fracture, Arch. Mech. Stosow. 6, 749-776 (1970)
  • [9] W. S. Blackburn, Steady crack growth in a linear viscoelastic material, Int. J. Fract. Mech. 7, 354-356 (1971)
  • [10] G. A. C. Graham, Two extending crack problems in linear viscoelasticity, Quart. Appl. Math. 27, 497-507 (1970)
  • [11] G. A. C. Graham, Quasi-static crack growth in linear viscoelastic bodies that are acted upon by alternating tensile and compressive loads, Proc. Roy. Irish Acad. 75A, 263-269 (1975)
  • [12] G. P. Cherepanov, Crack propagation in continuous media, J. Appl. Math. Mech. 31, 503-512 (1967)
  • [13] R. J. Nuismer, On the governing equation for quasi-static crack growth in linearly viscoelastic materials, J. Appl. Mech. 41, 631-634 (1974); 42, 521 (1975)
  • [14] R. M. Christensen and L. N. McCartney, Viscoelastic crack growth, Int. J. Fract. 23, R11-R13 (1983)
  • [15] W. G. Knauss, The mechanics of polymer fracture, Appl. Mech. Rev. 26, 1-17 (1973)
  • [16] L. N. McCartney, Crack growth laws for a variety of viscoelastic solids using energy and COD fracture criteria, Int. J. Fract. 15, 31-40 (1979); 16, R27-R30, R109-R110 (1980)
  • [17] R. A. Schapery, On the analysis of crack initiation and growth in nonhomogeneous viscoelastic media, Fracture Mechanics (R. Burridge, Ed.), American Mathematical Society, Providence. 1979, pp. 137-152
  • [18] R. A. Schapery, Time-dependent fracture: continuum aspects of crack growth, Encyclopedia of Materials Science and Engineering, Vol. 7, M. B. Bever (Editor-in-Chief), Pergamon Press, Oxford, 1986, pp. 5043-5053
  • [19] A. A. Kaminskii, Investigations in the field of the mechanics of the fracture of viscoelastic bodies, Soviet Applied Mechanics 16, 741-759 (1980); Mechanics of fracture of viscoelastic bodies (in Russian), Naukova Dumka, Kiev, 1980
  • [20] A. A. Kaminskii and V. M. Pestrikov, Kinetics of crack growth in aging viscoelastic bodies, Soviet Applied Mechanics 22, 790-797 (1986)
  • [21] O. Coussy, Un modèle de viscoélasticité confinée en mécanique de la rupture. Propagation subcritique, C. R. Acad. Sci. Paris Série II 302, 53-56 (1986) MR 977370
  • [22] L. Schovanec and J. R. Walton, The energy release rate for a quasi-static mode I crack in a nonhomogeneous linearly viscoelastic body, Engineering Fracture Mechanics 28, 445-454 (1987)
  • [23] G. Goleniewski, Dynamic crack growth in a viscoelastic material, Int. J. Fract. 37, R39-R44 (1988)
  • [24] J. M. Golden and G. A. C. Graham, Fatigue crack growth in viscoelastic materials, Arabian J. Sci. Engrg. 9, 77-85 (1984) MR 765094
  • [25] G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics, Vol. 7, H. L. Dryden and Th. von Karman (Editors), Academic Press, New York and London, 1962 MR 0149728
  • [26] J. M. Golden and G. A. C. Graham. Boundary volume problems in linear viscoelasticity, Springer-Verlag, Berlin, Heidelberg, 1988 MR 958684
  • [27] F. Erdogan, Crack-propagation theories, Fracture, An Advanced Treatise, Vol. II, Mathematical Fundamentals, H. Liebowitz (Editor), Academic Press, New York, 1968, pp. 497-590
  • [28] L. N. McCartney, Mechanics of matrix-cracking in brittle-matrix fibre-reinforced composites, Proc. Roy. Soc. Lond. A409, 329-350 (1987)
  • [29] J. N. Goodier, Mathematical theory of equilibrium cracks, Fracture, An Advanced Treatise, Vol II, Mathematical Fundamentals, H. Liebowitz (Editor), Academic Press, New York, 1968, pp. 1-66
  • [30] R. M. Christensen, Theory of Viscoelasticity: An Introduction, Academic Press, New York, 1982
  • [31] I. S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956 MR 0075755
  • [32] M. E. Gurtin and E. Sternberg, On the linear theory of viscoelasticity, Arch. Rational Mech. Anal. 11, 291-356 (1962) MR 0147047
  • [33] G. A. C. Graham and G. C. W. Sabin, The correspondence principle of linear viscoelasticity for problems that involve time-dependent regions, Internat. J. Engrg. Sci. 11, 123-140 (1973) MR 0455723
  • [34] A. E. Green and W. Zerna, Theoretical Elasticity, Clarendon Press, Oxford, 1968 MR 0245245
  • [35] L. V. Ahlfors, Complex Analysis, McGraw Hill, New York, 1966 MR 510197
  • [36] I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951 MR 0041963
  • [37] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, 1963 MR 0176648
  • [38] A. Erdelyi, Tables of Integral Transforms, Vol. II, McGraw Hill, New York, 1954 MR 0065685
  • [39] J. H. Michell, On the direct determination of stress in an elastic solid, with application to the theory of plates, Proc. Lond. Math. Soc. 31, 100-124 (1899) MR 1576699
  • [40] G. A. C. Graham and G. C. W. Sabin, The opening and closing of a growing crack in a linear viscoelastic body that is subject to alternating tensile and compressive loads, Int. J. Fract. 14, 639-649 (1978) MR 600045
  • [41] G. A. C. Graham and G. C. W. Sabin, Steady state solutions for a cracked standard linear viscoelastic body, Mech. Res. Commun. 8, 361-368 (1981)
  • [42] L. M. Kachanov, On the kinetics of crack growth, J. Appl. Math. Mech. 25, 739-745 (1961) MR 0136119
  • [43] A. A. Kaminskii and Ya. Ya. Rushchitskii, Applicability of the Volterra principle in the analysis of crack propagation in hereditary elastic media, Soviet Applied Mechanics 5, 102-108 (1969)
  • [44] I. N. Sneddon and M. Lowengrub, Crack Problems in the Classical Theory of Elasticity, Wiley, New York, 1969 MR 0258339

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73M25, 73B30, 73F15

Retrieve articles in all journals with MSC: 73M25, 73B30, 73F15


Additional Information

DOI: https://doi.org/10.1090/qam/1074956
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society