Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Existence, uniqueness, and long-time behavior of materials with nonmonotone equations of state and higher-order gradients


Authors: K. Kuttler and E. C. Aifantis
Journal: Quart. Appl. Math. 48 (1990), 473-489
MSC: Primary 73B30; Secondary 35B40, 35Q99, 80A22
DOI: https://doi.org/10.1090/qam/1074962
MathSciNet review: MR1074962
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] V. Alexiades and E. C. Aifantis, On the thermodynamic theory of fluid interfaces, infinite intervals, equilibrium solutions and minimizers, Mechanics of Microstructures, Report No. 9, 1984
  • [2] E. C. Aifantis and J. B. Serrin, The mechanical theory of fluid interfaces and Maxwell's rule, J. Coll. Int. Sci. 96, 517-529 (1983)
  • [3] G. Andrews and J. M. Ball, Asymptotic behavior and changes of phase in one-dimensional nonlinear viscoelasticity, J. Differential Equations 44, 306-341 (1982) MR 657784
  • [4] J. M. Ball, On the asymptotic behavior of generalized processes with applications to nonlinear evolution equations, J. Differential Equations 27, 224-265 (1978) MR 0461576
  • [5] J. Carr, M. E. Gurtin, and M. Slemrod, One-dimensional structured phase transformations under prescribed loads, MRC Technical Summary Report #2559, 1983
  • [6] C. M. Dafermos, Contraction semigroups and trend to equilibrium in continuum mechanics, Lecture Notes in Math. 503, 295-306 (1976)
  • [7] J. K. Hale, Dynamical systems and stability, J. Math. Anal. Appl., 26, 39-59 (1969) MR 0244582
  • [8] D. Henry, Geometric Theory of Semi linear Parabolic Equations, Lecture Notes in Math. Vol. 840, Springer, New York, 1981 MR 610244
  • [9] K. L. Kuttler, Regularity of weak solutions of some nonlinear conservation laws, Applicable Analysis, Vol. 26, Oct. 1987 MR 916896
  • [10] K. L. Kuttler and D. L. Hicks, Weak solutions of initial-boundary value problems for a class of nonlinear viscoelastic equations, Appl. Anal. (1) 26, 33-43 (1987) MR 916897
  • [11] K. L. Kuttler and D. L. Hicks, Initial boundary value problems for the equation $ {u_{tt}} = {\left( {\alpha \left( {{u_x}} \right){u_{xt}} + \sigma \left( {{u_x}} \right)} \right)_x} + f$, Quart. Appl. Math. (3) 46, 393-407 (1988) MR 963578
  • [12] R. L. Pego, Phase transitions in one dimensional nonlinear viscoelasticity: admissibility and stability, Arch. Rational Mech. Anal. (4) 97, 353-394 (1987) MR 865845
  • [13] M. Spivak, Calculus on Manifolds, W. A. Benjamin, 1965 MR 0209411

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73B30, 35B40, 35Q99, 80A22

Retrieve articles in all journals with MSC: 73B30, 35B40, 35Q99, 80A22


Additional Information

DOI: https://doi.org/10.1090/qam/1074962
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society