Long wavelength instability of the ABC-flows

Authors:
A. Libin and G. Sivashinsky

Journal:
Quart. Appl. Math. **48** (1990), 611-623

MSC:
Primary 76E99; Secondary 76D99

DOI:
https://doi.org/10.1090/qam/1079909

MathSciNet review:
MR1079909

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Multiple-scale and spectral (Galerkin) techniques are employed to analyze the long-wave stability of a simple periodic helical flow at large Reynolds numbers. For a certain class of long-wave perturbations the corresponding mathematical problem admits an exact asymptotic solution, showing that the helical flow is always unstable.

**[1]**L. D. Mešalkin and Ja. G. Sinaĭ,*Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid*, J. Appl. Math. Mech.**25**(1961), 1700–1705. MR**0137419**, https://doi.org/10.1016/0021-8928(62)90149-1**[2]**J. S. A. Green,*Two-dimensional turbulence near the viscous limit*, J. Fluid Mech.**62**, 273-287 (1974)**[3]**A. A. Nepomniashchii,*On stability of secondary flows of a viscous fluid in unbounded space*, J. Appl. Math. Mech.**40**, 836-841 (1976)**[4]**D. N. Beaumont,*The stability of spatially periodic flows*, J. Fluid Mech.**108**, 461-474 (1981)**[5]**Kanefusa Gotoh, Michio Yamada, and Jiro Mizushima,*The theory of stability of spatially periodic parallel flows*, J. Fluid Mech.**127**(1983), 45–58. MR**698519**, https://doi.org/10.1017/S0022112083002608**[6]**K. Gotoh and M. Yamada,*Instability of a cellular flow*, J. Phys. Soc. Japan**53**, 3395-3398 (1984)**[7]**G. Sivashinsky and V. Yakhot,*Negative viscosity phenomena in three-dimensional flows*, Phys. Review A**35**(2), 810-820 (1987)**[8]**Gregory I. Sivashinsky,*Weak turbulence in periodic flows*, Phys. D**17**(1985), no. 2, 243–255. MR**815288**, https://doi.org/10.1016/0167-2789(85)90009-0**[9]**H. K. Moffatt,*Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology. Part*2.*Stability considerations*, J. Fluid Mech.**166**, 359-387 (1986)**[10]**V. Yakhot and G. Sivashinsky,*Negative viscosity phenomena in three-dimensional flows*, Phys. Review A**35**(2), 815-820 (1987)**[11]**L. Shtilman and G. Sivashinsky,*Negative viscosity effect in three-dimensional flows*, J. de Physique**47**, 1137-1140 (1986)**[12]**B. J. Bayly and V. Yakhot,*Positive- and negative-effective-viscosity phenomena in isotropic and anisotropic Beltrami flows*, Phys. Rev. A**34**(1), 381-391 (1986)**[13]**K. Gotoh and M. Yamada,*The instability of rhombic cell flows*, Fluid Dynamics Res.**1**, 165-176 (1986)**[14]**D. Galloway and U. Frisch,*A note on the stability of a family of space-periodic Beltrami flows*, J. Fluid Mech.**180**, 557-564 (1987)**[15]**Zhen-Su She,*Metastability and vortex pairing in the Kolmogorov flow*, Phys. Lett. A**124**(1987), no. 3, 161–164. MR**910886**, https://doi.org/10.1016/0375-9601(87)90244-1**[16]**U. Frisch, Z. S. She, and P.-L. Sulem,*Large-scale flow driven by the anisotropic kinetic alpha effect*, Physica D**28**, 382-392 (1987)**[17]**A. Libin, G. I. Sivashinsky, and E. Levich,*Long-wave instability of periodic flows at large Reynolds numbers*, Phys. Fluids**30**, 2984-2986 (1987)**[18]**A. Libin and G. I. Sivashinsky,*Long wavelength instability of triangular eddies at large Reynolds numbers*, Phys. Lett. A**144**, 172-178 (1990)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76E99,
76D99

Retrieve articles in all journals with MSC: 76E99, 76D99

Additional Information

DOI:
https://doi.org/10.1090/qam/1079909

Article copyright:
© Copyright 1990
American Mathematical Society