Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Long wavelength instability of the ABC-flows


Authors: A. Libin and G. Sivashinsky
Journal: Quart. Appl. Math. 48 (1990), 611-623
MSC: Primary 76E99; Secondary 76D99
DOI: https://doi.org/10.1090/qam/1079909
MathSciNet review: MR1079909
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Multiple-scale and spectral (Galerkin) techniques are employed to analyze the long-wave stability of a simple periodic helical flow at large Reynolds numbers. For a certain class of long-wave perturbations the corresponding mathematical problem admits an exact asymptotic solution, showing that the helical flow is always unstable.


References [Enhancements On Off] (What's this?)

  • [1] L. D. Mešalkin and Ja. G. Sinaĭ, Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, J. Appl. Math. Mech. 25 (1961), 1700–1705. MR 0137419, https://doi.org/10.1016/0021-8928(62)90149-1
  • [2] J. S. A. Green, Two-dimensional turbulence near the viscous limit, J. Fluid Mech. 62, 273-287 (1974)
  • [3] A. A. Nepomniashchii, On stability of secondary flows of a viscous fluid in unbounded space, J. Appl. Math. Mech. 40, 836-841 (1976)
  • [4] D. N. Beaumont, The stability of spatially periodic flows, J. Fluid Mech. 108, 461-474 (1981)
  • [5] Kanefusa Gotoh, Michio Yamada, and Jiro Mizushima, The theory of stability of spatially periodic parallel flows, J. Fluid Mech. 127 (1983), 45–58. MR 698519, https://doi.org/10.1017/S0022112083002608
  • [6] K. Gotoh and M. Yamada, Instability of a cellular flow, J. Phys. Soc. Japan 53, 3395-3398 (1984)
  • [7] G. Sivashinsky and V. Yakhot, Negative viscosity phenomena in three-dimensional flows, Phys. Review A 35 (2), 810-820 (1987)
  • [8] Gregory I. Sivashinsky, Weak turbulence in periodic flows, Phys. D 17 (1985), no. 2, 243–255. MR 815288, https://doi.org/10.1016/0167-2789(85)90009-0
  • [9] H. K. Moffatt, Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology. Part 2. Stability considerations, J. Fluid Mech. 166, 359-387 (1986)
  • [10] V. Yakhot and G. Sivashinsky, Negative viscosity phenomena in three-dimensional flows, Phys. Review A 35 (2), 815-820 (1987)
  • [11] L. Shtilman and G. Sivashinsky, Negative viscosity effect in three-dimensional flows, J. de Physique 47, 1137-1140 (1986)
  • [12] B. J. Bayly and V. Yakhot, Positive- and negative-effective-viscosity phenomena in isotropic and anisotropic Beltrami flows, Phys. Rev. A 34 (1), 381-391 (1986)
  • [13] K. Gotoh and M. Yamada, The instability of rhombic cell flows, Fluid Dynamics Res. 1, 165-176 (1986)
  • [14] D. Galloway and U. Frisch, A note on the stability of a family of space-periodic Beltrami flows, J. Fluid Mech. 180, 557-564 (1987)
  • [15] Zhen-Su She, Metastability and vortex pairing in the Kolmogorov flow, Phys. Lett. A 124 (1987), no. 3, 161–164. MR 910886, https://doi.org/10.1016/0375-9601(87)90244-1
  • [16] U. Frisch, Z. S. She, and P.-L. Sulem, Large-scale flow driven by the anisotropic kinetic alpha effect, Physica D 28, 382-392 (1987)
  • [17] A. Libin, G. I. Sivashinsky, and E. Levich, Long-wave instability of periodic flows at large Reynolds numbers, Phys. Fluids 30, 2984-2986 (1987)
  • [18] A. Libin and G. I. Sivashinsky, Long wavelength instability of triangular eddies at large Reynolds numbers, Phys. Lett. A 144, 172-178 (1990)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76E99, 76D99

Retrieve articles in all journals with MSC: 76E99, 76D99


Additional Information

DOI: https://doi.org/10.1090/qam/1079909
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society