Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Identification of semiconductor contact resistivity


Authors: Stavros Busenberg and Weifu Fang
Journal: Quart. Appl. Math. 49 (1991), 639-649
MSC: Primary 35Q60; Secondary 35R30, 78A55
DOI: https://doi.org/10.1090/qam/1134746
MathSciNet review: MR1134746
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] W. Fang and E. Cumberbatch, Inverse problems for MOSFET contact resistivity, SIAM J. Appl. Math., to appear MR 1163801
  • [2] O. A. Ladyzhenskaya and N. N. Ural'tzeva, Linear and Quasilinear Elliptic Equations, Academic Press, London, 1968 MR 0244627
  • [3] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. I, Springer-Verlag, Berlin-Heidelberg, 1970 MR 0350177
  • [4] W. H. Loh, Modelling and measurement of contact resistance, Stanford Electronic Labs., Tech. Rep., No. G830-1, Dec. 1987
  • [5] W. H. Loh, K. Saraswat, and R. W. Dutton, Analysis and scaling of Kelvin resistors for extraction of specific contact resistivity, IEEE Electrion Device Letters 6 (3), 105-108 (1985)
  • [6] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984 MR 762825
  • [7] J. Rice and R. F. Boisvert, Solving Elliptic Problems Using ELLPACK, Springer-Verlag, New York, 1985 MR 772025
  • [8] G. F. Roach, Green's Functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1982 MR 660842
  • [9] J. Wloka, Partial Differential Equations, Cambridge Univ. Press, Cambridge, 1987 MR 895589

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q60, 35R30, 78A55

Retrieve articles in all journals with MSC: 35Q60, 35R30, 78A55


Additional Information

DOI: https://doi.org/10.1090/qam/1134746
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society