Asymptotic formulas for the shock wave of the scalar conservation law with smooth initial data

Author:
Kazumi Tanuma

Journal:
Quart. Appl. Math. **50** (1992), 109-128

MSC:
Primary 35L67; Secondary 35L65, 76L05

DOI:
https://doi.org/10.1090/qam/1146627

MathSciNet review:
MR1146627

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**M.S. Berger and L. E. Fraenkel,*On singular perturbations of nonlinear operator equations*, Indiana Univ. Math. J.**20**(7), 623-631 (1971) MR**0271779****[2]**C. M. Dafermos,*Characteristics in hyperbolic conservation laws*, Nonlinear Analysis and Mechanics, Vol. 1 (R. J. Knops, ed.), Pitman, London, 1977, pp. 1-58 MR**0481581****[3]**G. Guckenheimer,*Solving a single conservation law*, Lecture Notes in Math., vol. 468, Springer-Verlag, New York, 1975, pp. 108-134 MR**0606765****[4]**P. D. Lax,*Hyperbolic systems of conservation laws*, II, Comm. Pure Appl. Math.**10**, 537-566 (1957) MR**0093653****[5]**P. D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shock waves*, CBMS, vol. 11, SIAM, Philadelphia, PA, 1973 MR**0350216****[6]**D. G. Schaeffer,*A regularity theorem for conservation laws*, Adv. in Math.**11**, 368-386 (1973) MR**0326178****[7]**J. Smoller,*Shock waves and reaction-diffusion equations*, Springer-Verlag, New York, 1983 MR**688146****[8]**G. B. Whitham,*Linear and Nonlinear Waves*, Wiley-Interscience, New York, 1974 MR**0483954**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L67,
35L65,
76L05

Retrieve articles in all journals with MSC: 35L67, 35L65, 76L05

Additional Information

DOI:
https://doi.org/10.1090/qam/1146627

Article copyright:
© Copyright 1992
American Mathematical Society