Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Self-similar solutions of the second kind of nonlinear diffusion-type equations

Authors: Javier Alberto Diez, Julio Gratton and Fernando Minotti
Journal: Quart. Appl. Math. 50 (1992), 401-414
MSC: Primary 76R50; Secondary 35K55
DOI: https://doi.org/10.1090/qam/1178424
MathSciNet review: MR1178424
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the self-similar solutions of the problem of one-dimensional nonlinear diffusion of a passive scalar $ u$ (diffusivity $ D \infty {u^m}, m \ge 1$) towards the centre of a cylindrical or spherical symmetry. It is shown that this problem has a self-similar solution of the second kind. The self-similarity exponent $ \delta $ is found by solving a nonlinear eigenvalue problem arising from the requirement that the integral curve that represents the solution must join the appropriate singular points in the phase plane of the diffusion equation. In this way the integral curves that describe the solution before and after the diffusive current arrives at the centre of symmetry can be determined. The eigenvalues for different values of the nonlinearity index $ m$ and for cylindrical and spherical geometry are computed. Numerical integration of the equations allows us to determine the shape of the solution in terms of the physical variables. The application to the case $ m = 3$, corresponding (for cylindrical symmetry) to the creeping gravity currents of a very viscous liquid, is worked out in detail.

References [Enhancements On Off] (What's this?)

  • [1] P. Y. Polubarinova-Kochina, Theory of Ground Water Movement, Princeton Univ. Press, Princeton, NJ, 1962 MR 0142252
  • [2] P. S. Eagleson, Dynamic Hydrology, McGraw-Hill, New York, 1970
  • [3] L. A. Peletier, Applications of Nonlinear Analysis in the Physical Sciences, Chap. II: The porous media equation, Pitman Adv. Publ. Progr., Boston, 1981 MR 659697
  • [4] M. Muskat, The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill, New York, 1937
  • [5] B. H. Gilding and L. A. Peletier, On a class of similarity solutions of the porous media equation, J. Math. Anal. Appl. 55, 351-364 (1976) MR 0436751
  • [6] J. L. Vazquez, Free Boundary Problems: Theory and Applications, Vol. I, Pitman Adv. Publ. Progr., Boston, 1983 MR 714917
  • [7] Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Academic Press, New York, 1966
  • [8] J. Buckmaster, Viscous sheets advancing over dry beds, J. Fluid Mech. 81, 735-756 (1977) MR 0455812
  • [9] H. E. Huppert, The propagation of two-dimensional viscous gravity currents over a rigid horizontal surface, J. Fluid Mech. 121, 43-58 (1982)
  • [10] J. Gratton and F. Minotti, Self similar viscous gravity currents: Phase plane formalism, J. Fluid. Mech. 210, 155-182 (1990) MR 1051319
  • [11] G. J. Pert, A class of similar solutions of the non-linear diffusion equation, J. Phys. A 10, 583-593 (1977)
  • [12] R. E. Marshak, Effect of radiation on shock wave behavior, Phys. Fluids 1, 24-29 (1958) MR 0116745
  • [13] E. W. Larsen and G. C. Pomraning, Asymptotic analysis of non-linear Marshak waves, SIAM J. Appl. Math. 39, 201-212 (1980) MR 588494
  • [14] G. I. Barenblatt, On the approximate solution of problems of uniform unsteady filtration in a porous media, Prikl. Mat. Mekh. 18, 351-370 (1954) MR 0070370
  • [15] G. I. Barenblatt and Ya. B. Zel'dovich, On the dipole-type solution in problems of unsteady gas filtration in the polytropic regime, Prikl. Mat. Mekh. 21, 718-720 (1957)
  • [16] R. E. Pattle, Diffusion from an instantaneous point source with a concentration dependent coefficient, Quart. J. Mech. Appl. Math. 12, 407-409 (1959) MR 0114505
  • [17] R. E. Grundy, Similarity solutions of the non-linear diffusion equation, Quart. Appl. Math. 37, 259-280 (1979) MR 548987
  • [18] G. I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics, Consultants Bureau, New York, 1979 MR 556234
  • [19] D. G. Aronson, The Porous Medium Equation, Nonlinear Diffusion Problems, Lecture Notes in Math., vol. 1224, Springer-Verlag, 1986 MR 877986
  • [20] I. G. Kevrekidies, A numerical study of global bifurcations in chemical dynamics, AIChE J. 33, 1850-1864 (1987)
  • [20] G. Guderley, Starke Kugelige und Zylindrische Verdichtungstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung 19, 302-312 (1942) MR 0008522
  • [21] J. A. Diez, J. Gratton, and F. Minotti, Autosimilaridad de segunda especie: Difusión hacia un centro de simetria, Internal Report, Universidad Nacional del Centro de la Provincia de Buenos Aires, 1989 (Copies are available on request)
  • [22] J. A. Diez, R. Gratton, and J. Gratton, Verificación experimental de una solución autosimilar de segunda especie: Flujo de lubricación convergente, Anal. AFA 1, 161-163 (1989)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76R50, 35K55

Retrieve articles in all journals with MSC: 76R50, 35K55

Additional Information

DOI: https://doi.org/10.1090/qam/1178424
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society