Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

An explosive instability in magnetic fluids


Authors: S. K. Malik and M. Singh
Journal: Quart. Appl. Math. 50 (1992), 613-626
MSC: Primary 76E25; Secondary 76W05
DOI: https://doi.org/10.1090/qam/1193659
MathSciNet review: MR1193659
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The stability of a magnetic fluid subject to a normal magnetic field at the second harmonic resonance is investigated. The stability characteristics are examined on the basis of two coupled dynamical equations that are solved numerically. The solution reveals that there exists an explosive instability when the applied magnetic field strength is in the neighbourhood of the bifurcation magnetic field strength $ H_{m}$ .


References [Enhancements On Off] (What's this?)

  • [1] R. E. Rosensweig, Ferrohydrodynamics, Cambridge Univ. Press, 1985
  • [2] M. D. Cowley and R. E. Rosensweig, The interfacial stability of a ferromagnetic fluid, J. Fluid Mech. 30, 671 (1967)
  • [3] S. K. Malik and M. Singh, Nonlinear dispersive instabilities in magnetic fluids, Quart. Appl. Math. XLII, 359-371 (1984) MR 757174
  • [4] A. Gailitis, Formation of the hexagonal pattern on the surface of a ferromagnetic fluid in an applied magnetic field, J. Fluid Mech. 82, 401 (1977)
  • [5] E. E. Trombly and J. W. Thomas, Bifurcating instabilities of the free surface of a ferrofluid, SIAM J. Math. Anal. 14. 736 (1983) MR 704488
  • [6] J. P. Brancher, Waves and instabilities on a plane interface between ferrofluids and nonmagnetic fluids, Thermomechanics of Magnetic Fluids (ed., B. Berkovsky), Hemisphere, Bristol, PA, 1978
  • [7] A. G. Boudouvis, J. L. Puchalla, L. E. Scriven, and R. E. Rosensweig, Normal field instability and pattern in pool of ferrofluid, J. Magn. Magn. Mat. 65, 307 (1987)
  • [8] M. Silber and E. Knobloch, Pattern selection in ferrofluids, Phys. D 30, 83 (1988) MR 939268
  • [9] S. K. Malik and M. Singh, Nonlinear waves in magnetic fluids, Continuum Mechanics and its Applications (eds., G. A. C. Graham and S. K. Malik), Hemisphere, Bristol, PA, 1989
  • [10] R. Kant and S. K. Malik, Nonlinear waves in superposed magnetic fluids, Phys. Fluids 28, 3534-3537 (1985) MR 815463
  • [11] R. Kant and S. K. Malik, Nonlinear internal resonance in magnetic fluids, J. Magn. Magn. Mat. 65, 347 (1987)
  • [12] M. A. Weissman, Nonlinear wave-packets in the Kelvin-Helmholtz instability, Philos. Trans. Roy. Soc. London Ser. A 290, 639 (1979)
  • [13] Y. Murakami, Second harmonic resonance on the marginally neutral curve in the Kelvin-Helmholtz flow, Phys. Lett. A 131, 368-372 (1988) MR 961025
  • [14] L. F. McGoldrick, An experiment on second-order capillary-gravity resonant wave interactions, J. Fluid Mech. 40, 251 (1970)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76E25, 76W05

Retrieve articles in all journals with MSC: 76E25, 76W05


Additional Information

DOI: https://doi.org/10.1090/qam/1193659
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society