Some nonstandard problems for the Poisson equation

Authors:
L. E. Payne and P. W. Schaefer

Journal:
Quart. Appl. Math. **51** (1993), 81-90

MSC:
Primary 35J05; Secondary 35A05

DOI:
https://doi.org/10.1090/qam/1205938

MathSciNet review:
MR1205938

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**G. E. Backus,*Application of a non-linear boundary-value problem for Laplace's equation to gravity and geomagnetic intensity surveys*, Quart. J. Mech. Appl. Math.**XXI**, 195-221 (1968) MR**0227444****[2]**E. Hopf,*Elementare Bemerkung über die Lösung partieller Differentialgleichung zweiter Ordnung von elliptischen Typus*, Berlin Sber. Preuss. Akad. Wiss.**19**, 147-152 (1927)**[3]**-,*A remark on elliptic differential equations of the second order*, Proc. Amer. Math. Soc.**3**, 791-793 (1952) MR**0050126****[4]**B. Kawohl,*Rearrangements and convexity of level sets in PDE*, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin and New York, 1985 MR**810619****[5]**A. U. Kennington,*Power concavity and boundary value problems*, Indiana Univ. Math. J.**34**, 687-704 (1985) MR**794582****[6]**N. J. Korevaar,*Convexity of level sets for solutions to elliptic ring problems*, Comm. Partial Differential Equations**15**, 541-556 (1990) MR**1046708****[7]**R. Magnanini,*A fully nonlinear boundary value problem for the Laplace equation*, Lecture Notes Pure Appl. Math., vol. 109, Marcel Dekker, 1987, pp. 327-330 MR**912311****[8]**-,*A fully nonlinear boundary value problem for the Laplace equation in dimension two*, Appl. Anal.**39**, 185-192 (1990) MR**1095632****[9]**L. G. Makar-Limanov,*Solutions of Dirichlet's problem for the equation**on a convex region*, Math. Notes**9**, 52-53 (1971) MR**0279321****[10]**L. E. Payne,*Bounds for the maximum stress in the St. Venant torsion problem*, Indian J. Mech. Math. (special issue) 51-59 (1968) MR**0351225****[11]**L. E. Payne and G. A. Philippin,*Some maximum principles for nonlinear elliptic equations in divergence form with applications to capillary surfaces and to surfaces of constant mean curvature*, Nonlinear Anal.**3**, 193-211 (1979) MR**525971****[12]**-,*Some applications of the maximum principle in the problem of torsional creep*, SIAM J. Appl. Math.**33**, 446-455 (1977) MR**0455738****[13]**J. Serrin,*A symmetry problem in potential theory*, Arch. Rational Mech. Anal.**43**, 304-318 (1971) MR**0333220****[14]**-,*The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables*, Philos. Trans. Roy. Soc. London**264**, 413-496 (1969) MR**0282058****[15]**-,*Nonlinear elliptic equations of second order*, Lectures in Sympos. Partial Differential Equations, Berkeley, 1971 (mimeographed notes)**[16]**R. P. Sperb,*Extension of two theorems of Payne to some nonlinear Dirichlet problems*, J. Appl. Math. Phys. (ZAMP)**26**, 721-726 (1975) MR**0393835****[17]**-,*Maximum principles and their applications*, Math. in Science and Engineering, vol. 157, Academic Press, New York, 1981 MR**615561****[18]**H. F. Weinberger,*Remarks on the preceding paper of Serrin*, Arch. Rational Mech. Anal.**43**, 319-320 (1971) MR**0333221**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35J05,
35A05

Retrieve articles in all journals with MSC: 35J05, 35A05

Additional Information

DOI:
https://doi.org/10.1090/qam/1205938

Article copyright:
© Copyright 1993
American Mathematical Society