Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Nonlinear vortex trail dynamics. II. Analytic solutions


Authors: Chjan C. Lim and Lawrence Sirovich
Journal: Quart. Appl. Math. 51 (1993), 129-146
MSC: Primary 76C05
DOI: https://doi.org/10.1090/qam/1205942
MathSciNet review: MR1205942
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Spatially periodic large amplitude solutions of the von Karman model are obtained in the neighborhood of singularities. These singularities correspond to vortex clusters in the physical plane. The quasi-periodic and unbounded solutions found analytically confirm earlier numerical work and show qualitative agreement with experimental observations of large-scale phenomena of vortex trails. Separatrices or heteroclinic orbits were explicitly found for an integrable approximate equation, which indicate that the von Karman model itself supports chaotic solutions.


References [Enhancements On Off] (What's this?)

  • [1] V. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1973 MR 997295
  • [2] C. Basdevant, Y. Couder, and R. Sadourny, Vortices and vortex-couples in 2-D turbulence, Lecture Notes in Phys., vol. 157, Springer, 1984, pp. 327-345
  • [3] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed., revised, Springer-Verlag, New York-Heidelberg, 1971 MR 0277773
  • [4] N. E. Kochin, I. A. Kiebel, and N. F. Roze, Theoretical Hydrodynamics, Wiley Interscience, 1964
  • [5] H. Lamb, Hydrodynamics, Dover, New York, 1945
  • [6] Chjan C. Lim, Singular manifolds and quasi-periodic solution Hamiltonians for vortex lattices, Phys. D 30, 343-362 (1988) MR 947905
  • [7] Chjan C. Lim, Existence of Kolmogorov-Arnold-Moser tori phase-space of lattice vortex system, Z. Angew. Math. Phys. 41, 227-244 (1990) MR 1045813
  • [8] Chjan C. Lim and L. Sirovich, Wave propagation on the vortex trail, Phys. Fluids 29, 3910-3911 (1986)
  • [9] Chjan C. Lim and L. Sirovich, Nonlinear vortex trail I, Phys. Fluids 31, 991-998 (1986) MR 942400
  • [10] T. Matsui and M. Okude, XVth International Congress of Theoretical Applied Mechanics, University of Toronto, Aug. 1980, pp. 1-27.
  • [11] J. Moser, Stable and Random Motions, Princeton Univ. Press, Princeton, NJ, 1973 MR 0442980
  • [12] L. Sirovich, The Karman vortex trail and flow behind a circular cylinder, Phys. Fluid 28, 2723-2726 (1985)
  • [13] L. Sirovich and Chjan C. Lim, Comparison of experiment with the dynamics of the von Karman vortex trail, Studies in Vortex Dominated Flows, Y. Hussaini and M. Salas, eds., Springer-Verlag, New York, 1986, p. 4
  • [14] S. Taneda, Downstream development of the wakes behind cylinders, J. Phys. Soc. Japan 14, 843-848 (1959)
  • [15] Th. von Karman, Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt, Gottingen Nachr. Math Phys. K 1, 509-517 (1911)
  • [16] Chjan C. Lim, A combinatorial perturbation method and Arnold's whiskered tori in vortex dynamics, submitted to Physica D. MR 1214551

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76C05

Retrieve articles in all journals with MSC: 76C05


Additional Information

DOI: https://doi.org/10.1090/qam/1205942
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society