Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Nonlinear vortex trail dynamics. II. Analytic solutions

Authors: Chjan C. Lim and Lawrence Sirovich
Journal: Quart. Appl. Math. 51 (1993), 129-146
MSC: Primary 76C05
DOI: https://doi.org/10.1090/qam/1205942
MathSciNet review: MR1205942
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Spatially periodic large amplitude solutions of the von Karman model are obtained in the neighborhood of singularities. These singularities correspond to vortex clusters in the physical plane. The quasi-periodic and unbounded solutions found analytically confirm earlier numerical work and show qualitative agreement with experimental observations of large-scale phenomena of vortex trails. Separatrices or heteroclinic orbits were explicitly found for an integrable approximate equation, which indicate that the von Karman model itself supports chaotic solutions.

References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnol′d, Mathematical methods of classical mechanics, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 997295
  • [2] C. Basdevant, Y. Couder, and R. Sadourny, Vortices and vortex-couples in 2-D turbulence, Lecture Notes in Phys., vol. 157, Springer, 1984, pp. 327-345
  • [3] Paul F. Byrd and Morris D. Friedman, Handbook of elliptic integrals for engineers and scientists, Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York-Heidelberg, 1971. Second edition, revised. MR 0277773
  • [4] N. E. Kochin, I. A. Kiebel, and N. F. Roze, Theoretical Hydrodynamics, Wiley Interscience, 1964
  • [5] H. Lamb, Hydrodynamics, Dover, New York, 1945
  • [6] Chjan C. Lim, Singular manifolds and quasi-periodic solutions of Hamiltonians for vortex lattices, Phys. D 30 (1988), no. 3, 343–362. MR 947905, https://doi.org/10.1016/0167-2789(88)90025-5
  • [7] Chjan C. Lim, Existence of KAM tori in the phase-space of lattice vortex systems, Z. Angew. Math. Phys. 41 (1990), no. 2, 227–244. MR 1045813, https://doi.org/10.1007/BF00945109
  • [8] Chjan C. Lim and L. Sirovich, Wave propagation on the vortex trail, Phys. Fluids 29, 3910-3911 (1986)
  • [9] Chjan C. Lim and Lawrence Sirovich, Nonlinear vortex trail dynamics, Phys. Fluids 31 (1988), no. 5, 991–998. MR 942400, https://doi.org/10.1063/1.866719
  • [10] T. Matsui and M. Okude, XVth International Congress of Theoretical Applied Mechanics, University of Toronto, Aug. 1980, pp. 1-27.
  • [11] Jürgen Moser, Stable and random motions in dynamical systems, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J; Annals of Mathematics Studies, No. 77. MR 0442980
  • [12] L. Sirovich, The Karman vortex trail and flow behind a circular cylinder, Phys. Fluid 28, 2723-2726 (1985)
  • [13] L. Sirovich and Chjan C. Lim, Comparison of experiment with the dynamics of the von Karman vortex trail, Studies in Vortex Dominated Flows, Y. Hussaini and M. Salas, eds., Springer-Verlag, New York, 1986, p. 4
  • [14] S. Taneda, Downstream development of the wakes behind cylinders, J. Phys. Soc. Japan 14, 843-848 (1959)
  • [15] Th. von Karman, Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt, Gottingen Nachr. Math Phys. K 1, 509-517 (1911)
  • [16] Chjan C. Lim, A combinatorial perturbation method and Arnol′d whiskered tori in vortex dynamics, Phys. D 64 (1993), no. 1-3, 163–184. MR 1214551, https://doi.org/10.1016/0167-2789(93)90254-X

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76C05

Retrieve articles in all journals with MSC: 76C05

Additional Information

DOI: https://doi.org/10.1090/qam/1205942
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society