Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Analysis and application of a continuation method for a self-similar coupled Stefan system

Author: Joseph D. Fehribach
Journal: Quart. Appl. Math. 51 (1993), 405-423
MSC: Primary 80A22; Secondary 35K55, 65H20
DOI: https://doi.org/10.1090/qam/1233522
MathSciNet review: MR1233522
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This work deals with a continuation method for computing solutions to a self-similar two-component Stefan system in which the diffusion coefficients depend on the concentrations. The procedure computes a one-parameter homotopy connecting the known solution of a simplified problem (when the parameter is zero) to the solution of the problem at hand (when the parameter is one). Local convergence of the method and local existence and uniqueness of solutions for the original system are proven. Also, several examples coming from precipitant-driven protein crystal growth are discussed. The most interesting of these is a Stefan problem containing a porous media equation that corresponds to the liquid phase being in a meta-stable state near the spinodal region. The bifurcation code AUTO is used in the computations.

References [Enhancements On Off] (What's this?)

  • [1] V. Alexiades, D. G. Wilson, and A. D. Solomon, Macroscopic global modeling of binary alloy solidification processes, Quart. Appl. Math. 43 (1985), no. 2, 143–158. MR 793522, https://doi.org/10.1090/S0033-569X-1985-0793522-6
  • [2] Carl M. Bender and Steven A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill Book Co., New York, 1978. International Series in Pure and Applied Mathematics. MR 538168
  • [3] W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal. 10 (1990), no. 3, 379–405. MR 1068199, https://doi.org/10.1093/imanum/10.3.379
  • [4] Y. C. Chang and A. S. Myerson, The diffusivity of potassium chloride and sodium chloride in concentrated, saturated and supersaturated aqueous solutions, AlChE J. 31, 890-894 (1985)
  • [5] W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Co., Boston, Mass., 1965. MR 0190463
  • [6] John Crank, Free and moving boundary problems, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1984. MR 776227
  • [7] A. H. Craven and L. A. Peletier, Similarity solutions for degenerate quasilinear parabolic equations, J. Math. Anal. Appl. 38 (1972), 73–81. MR 0313634, https://doi.org/10.1016/0022-247X(72)90118-7
  • [8] A. B. Crowley and J. R. Ockendon, On the numerical solution of an alloy solidification problem, Internat. J. Heat Mass Transfer 22, 941-947 (1979)
  • [9] Jean Descloux and Jacques Rappaz, Approximation of solution branches of nonlinear equations, RAIRO Anal. Numér. 16 (1982), no. 4, 319–349 (English, with French summary). MR 684829
  • [10] Eusebius Doedel, AUTO: a program for the automatic bifurcation analysis of autonomous systems, Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man., 1980), 1981, pp. 265–284. MR 635945
  • [11] Eusebius J. Doedel and Mark J. Friedman, Numerical computation of heteroclinic orbits, J. Comput. Appl. Math. 26 (1989), no. 1-2, 155–170. Continuation techniques and bifurcation problems. MR 1007358, https://doi.org/10.1016/0377-0427(89)90153-2
  • [12] E. J. Doedel and J. P. Kernévez, AUTO: Software for continuation and bifurcation problems in ordinary differential equations, Applied Mathematics Report, California Institute of Technology, [ill]
  • [13] C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, Mathematical Models for Phase Change Problems, J. F. Rodrigues, ed., Internat. Ser. Numer. Math., vol. 88, Birkhäuser Verlag, Basel, 1989
  • [14] J. D. Fehribach and F. Rosenberger, Analysis of models for two solution crystal growth problems, J. Crystal Growth 94, 6-14 (1989)
  • [15] P. C. Fife, Models for phase separation and their mathematics, Proc. of Workshop on Nonlinear PDE and Appl., Kyoto, 1989
  • [16] Mark J. Friedman and Eusebius J. Doedel, Numerical computation and continuation of invariant manifolds connecting fixed points, SIAM J. Numer. Anal. 28 (1991), no. 3, 789–808. MR 1098418, https://doi.org/10.1137/0728042
  • [17] F. R. de Hoog and R. Weiss, An approximation theory for boundary value problems on infinite intervals, Computing 24 (1980), no. 2-3, 227–239 (English, with German summary). MR 620090, https://doi.org/10.1007/BF02281727
  • [18] S. B. Howard, P. J. Twigg, J. K. Baird, and E. J. Meehan, The solubility of hen egg-white lysozyme, J. Crystal Growth 90, 94-104 (1988)
  • [19] William L. Kath and Donald S. Cohen, Waiting-time behavior in a nonlinear diffusion equation, Stud. Appl. Math. 67 (1982), no. 2, 79–105. MR 670736, https://doi.org/10.1002/sapm198267279
  • [20] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
  • [21] Marianela Lentini and Herbert B. Keller, Boundary value problems on semi-infinite intervals and their numerical solution, SIAM J. Numer. Anal. 17 (1980), no. 4, 577–604. MR 584732, https://doi.org/10.1137/0717049
  • [22] Edward J. Meehan, personal communication, 1989
  • [23] W. W. Mullins and R. F. Sekerka, Stability of a planar interface during the solidification of a binary alloy, J. Appl. Phys. 35, 444-451 (1964)
  • [24] A. S. Myerson and D. Senol, Diffusion coefficients near the spinodal curve, AlChE J. 30, 1004-1006 (1984)
  • [25] R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. Roy. Soc. London Ser. A 422 (1989), no. 1863, 261–278. MR 997638
  • [26] M. Pusey and R. Naumann, Growth kinetics of tetragonal lysozyme crystals, J. Crystal Growth 76, 593-599 (1986)
  • [27] F. Rosenberger, Inorganic and protein crystal growth--similarities and differences, J. Crystal Growth 76, 618-636 (1986)
  • [28] L. I. Rubinštein, The Stefan problem, Transl. Math. Monographs, vol. 27, Amer. Math. Soc., Providence, RI, 1971
  • [29] D. G. Wilson, A. D. Solomon, and V. Alexiades, A shortcoming of the explicit solution for the binary alloy solidification problem, Lett. Heat Mass Transfer 9, 421-428 (1982)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80A22, 35K55, 65H20

Retrieve articles in all journals with MSC: 80A22, 35K55, 65H20

Additional Information

DOI: https://doi.org/10.1090/qam/1233522
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society