Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Bifurcation and stability analysis of a rotating beam


Authors: Peter Gross, Metin Gürgöze and Wolfhard Kliem
Journal: Quart. Appl. Math. 51 (1993), 701-711
MSC: Primary 73H10; Secondary 34A47, 73K05
DOI: https://doi.org/10.1090/qam/1247435
MathSciNet review: MR1247435
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss small oscillations of an elastic beam clamped radially to the interior of a rotating ring. It is well known that if the speed of rotation is sufficiently high, the trivial equilibrium of the beam may lose stability and the beam buckles.


References [Enhancements On Off] (What's this?)

  • [1] N. Mostaghel and I. Tadjbakhsh, Buckling of rotating rods and plates, Internat. J. Mech. Sci. 15, 429-434 (1973)
  • [2] F. G. Rammerstorfer, Comment on buckling of rotating rods and plates, Internat. J. Mech. Sci. 16, 515-517 (1974)
  • [3] A. Nachman, The buckling of rotating rods, J. Appl. Mech. 42, 222-224 (1975)
  • [4] J. T. S. Wang, On the buckling of rotating rods, Internat. J. Mech. Sci. 18, 407-411 (1976)
  • [5] W. D. Lakin and A. Nachman, Unstable vibrations and buckling of rotating flexible rods, Quart. Appl. Math. 35 (1977/78), no. 4, 479–493. MR 0668740, https://doi.org/10.1090/S0033-569X-1978-0668740-9
  • [6] D. A. Peters and D. H. Hodges, In-plane vibration and buckling of a rotating beam clamped off the axis of rotation, J. Appl. Mech. 47, 398-402 (1980)
  • [7] M. Gürgöze, On the dynamical behaviour of a rotating beam, J. Sound and Vibration 143, 356-363 (1990)
  • [8] H. I. Weber, A note on the stability of a rod subjected to compression by centrifugal force, J. Sound and Vibration 46, 105-111 (1976)
  • [9] A. G. Hernried and G. B. Gustafson, On the dynamic response of a single-degree-of-freedom structure attached to the interior of a rotating rigid ring, J. Appl. Mech. 55, 201-205 (1988)
  • [10] D. A. Peters and D. H. Hodges, Discussion on the dynamic response of a single-degree-of-freedom structure attached to the interior of a rotating rigid ring, J. Appl. Mech. 55, 747-748 (1988)
  • [11] W. Kliem, Good and bad mathematical modelling in mechanics, Teaching of Mathematical Modelling and Applications, M. Niss, W. Blum, and I. Huntley (Eds.), Ellis Horwood, Chichester, 1991, pp. 384-392
  • [12] A. C. Hearn, Reduce, User's Manual Version 3.3, The Rand Corporation, Santa Monica, CA, Rand Publication CP 78 (Rev. 7/87), 1987
  • [13] G. Rayna, Reduce: Software for Algebraic Computation, Springer-Verlag, New York, 1987
  • [14] Lothar Collatz, Eigenwertaufgaben mit technischen Anwendungen, Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, Band 19, Akademische Verlagsgesellschaft, Leipzig, 1949 (German). MR 0031337
  • [15] Gérard Iooss and Daniel D. Joseph, Elementary stability and bifurcation theory, Springer-Verlag, New York-Berlin, 1980. Undergraduate Texts in Mathematics. MR 636256
  • [16] Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73H10, 34A47, 73K05

Retrieve articles in all journals with MSC: 73H10, 34A47, 73K05


Additional Information

DOI: https://doi.org/10.1090/qam/1247435
Article copyright: © Copyright 1993 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website