Eigenfrequencies of curved Euler-Bernoulli beam structures with dissipative joints

Author:
William H. Paulsen

Journal:
Quart. Appl. Math. **53** (1995), 259-271

MSC:
Primary 73D30; Secondary 73K12

DOI:
https://doi.org/10.1090/qam/1330652

MathSciNet review:
MR1330652

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we will compute asymptotically the eigenfrequencies for the in-plane vibrations of an Euler-Bernoulli beam system with dissipative joints, which allow the beams to be curved into an arc of a circle. This enhances the author's previous result for structures involving straight beams, given in his preprint ``Eigenfrequencies of the non-collinearly coupled Euler-Bernoulli beam system with dissipative joints". Matrix techniques are used to combine asymptotic analysis with a form of the wave propagation method.

**[1]**C. Aganovic and Z. Tutez,*A justification of the one-dimensional model of an elastic beam*, Math. Methods Appl. Sci.**8**, 1-14 (1986)**[2]**W. Boothby,*An Introduction to Differentiable Manifolds and Riemannian Geometry*, Academic Press, Orlando, FL, 1986**[3]**G. Chen, M. C. Delfour, A. M. Krall, and G. Payne,*Modeling, stabilization, and control of serially connected beams*, SIAM J. Control Optim.**25**, 526-546 (1987)**[4]**G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne, and H. H. West,*The Euler-Bernoulli beam equation with boundary energy dissipation*, Operator Methods for Optimal Control Problems, Marcel Dekker, New York, 1987, pp. 67-96**[5]**G. Chen, S. G. Krantz, D. L. Russell, C. E. Wayne, H. H. West, and M. P. Colman,*Analysis, designs and behavior of dissipative joints for coupled beams*, SIAM J. Appl. Math.**49**, 1665-1693 (1989)**[6]**G. Chen, S. G. Krantz, D. L. Russell, C. E. Wayne, H. H. West, and J. Zhou,*Modeling, analysis and testing of dissipative beam joints--experiments and data smoothing*, Math. Comput. Modelling**11**, 1011-1016 (1988)**[7]**G. Chen and H. Wang,*Asymptotic locations of eigenfrequencies of Euler-Bernoulli beam with nonhomogeneous structural and viscous damping coefficients*, SIAM J. Control Optim.**29**, 347-367 (1991)**[8]**G. Chen and J. Zhou,*The wave propagation method for the analysis of boundary stabilization in vibration structures*, SIAM J. Appl. Math.**50**, 1254-1283 (1990)**[9]**P. G. Ciarlet,*Plates and Junctions in Elastic Multi-structures*, Springer-Verlag, New York, 1990**[10]**J. B. Keller and S. I. Rubinow,*Asymptotic solution of eigenvalue problems*, Ann. of Physics**9**, 24-75 (1960)**[11]**A. M. Krall,*Asymptotic stability of the Euler-Bernoulli beam with boundary control*, J. Math. Anal. Appl.**137**, 288-295 (1989)**[12]**S. G. Krantz and W. Paulsen,*Asymptotic eigenfrequency distributions for the N-beam Euler-Bernoulli coupled beam equation with dissipative joints*, J. Symbolic Comput.**11**, 369-418 (1991)**[13]**W. H. Paulsen,*Eigenfrequencies of non-collinearly coupled beams with dissipative joints*, Proc. 31st IEEE Conf. Decision and Control (Tucson, AZ, 1992), Vol. 3, IEEE Control Systems Soc., New York, 1992, pp. 2986-2991**[14]**W. H. Paulsen,*Eigenfrequencies of the non-collinearly coupled Euler-Bernoulli beam system with dissipative joints*, preprint**[15]**W. D. Pilkey,*Manual for the response of structural members*. Vol. I, Illinois Inst. Tech. Res. Inst. Project J6094, Chicago, IL, 1969

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73D30,
73K12

Retrieve articles in all journals with MSC: 73D30, 73K12

Additional Information

DOI:
https://doi.org/10.1090/qam/1330652

Article copyright:
© Copyright 1995
American Mathematical Society