Some criteria for the disappearance of the mushy region in the Stefan problem

Authors:
I. G. Götz and B. Zaltzman

Journal:
Quart. Appl. Math. **53** (1995), 657-671

MSC:
Primary 35R35; Secondary 35K05, 80A22

DOI:
https://doi.org/10.1090/qam/1359501

MathSciNet review:
MR1359501

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The disappearance of the mushy region in a multidimensional one-phase Stefan problem is discussed. In the case of a piecewise-smooth boundary of the domain and bounded initial-boundary data, sufficient conditions for the disappearance of the mushy zone in a finite time are presented. For a -smooth boundary and appropriately smooth boundary data both necessary and sufficient conditions for the mush to vanish are obtained. Possible behaviors of the transient phase for a twodimensional solution near a corner point of the domain are also investigated.

**[1]**D. R. Atthey,*A finite difference scheme for melting problems*, J. Inst. Math. Appl.**354**(1975)**[2]**J. I. Diaz, A. Fasano, and A. Meirmanov,*On the disappearance of the mushy region in multidimensional Stefan problem*, Proc. Free Boundary Problems: Theory & Applications, Montreal, 1990**[3]**I. G. Götz and B. Zaltzman,*On the behavior of mushy region in a Stefan problem*, Internat. Ser. Numer. Math.**9**, 155-163 (1991)**[4]**I. G. Götz and B. Zaltzman,*Nonincrease of mushy region in a nonhomogeneous Stefan problem*, Quart. Appl. Math.**XLIX**, 741-746 (1991)**[5]**B. Gustafsson and J. Mossino,*Quelques inequalités isopérimétriques pour le problème de Stefan*, Math. Analysis, C. R. Acad. Sci. Paris**305**(1), 669-672 (1987)**[6]**S. L. Kamenomostskaya,*On the Stefan problem*, Mat. Sbornik.**53**(95), 489-514 (1961) (in Russian)**[7]**O. A. Ladyženskaja and N. N. Ural'ceva,*Linear and quasilinear equations of elliptic type*, Nauka: Moscow (1967) (in Russian)**[8]**A. M. Meirmanov,*An example of nonexistence of a classical solution of the Stefan problem*, Soviet Math. Dokl.**3**(28), 564-566 (1981)**[9]**A. M. Meirmanov,*The structure of a generalized solution of the Stefan problem*, Periodic solutions, Dokl. Akad. Nauk SSSR**272**(4), 789-791 (1981); English transl. in Soviet Math. Dokl.**2**(28) 440-443 (1983)**[10]**A. M. Meirmanov,*On the disappearance of the mushy region in the Stefan problem with spherical symmetry*(in Russian), Dinamika sploshnoi sredy, Lavrent'ev Institute of Hydrodynamics**91**, 86-99 (1985)**[11]**A. M. Meirmanov,*The Stefan problem*, De Gruyter Expositions in Math., Berlin, 244 (1992)**[12]**O. A. Oleinik,*A method of solution of the general Stefan problem*, Soviet Math. Dokl.**1**, 1350-1354 (1960)**[13]**M. Primicerio,*Mushy region in phase-change problem*, Appl. Nonlinear Funct. Anal., Lang, Frankfurt/Main, 251-269 (1982)**[14]**J. C. W. Rogers and A. E. Berger,*Some properties of the nonlinear semigroup for the problem*, Nonlinear Anal., Theory, Methods, and Applications**8**(8), 909-939 (1984)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35R35,
35K05,
80A22

Retrieve articles in all journals with MSC: 35R35, 35K05, 80A22

Additional Information

DOI:
https://doi.org/10.1090/qam/1359501

Article copyright:
© Copyright 1995
American Mathematical Society