On the exponential stability of linear viscoelasticity and thermoviscoelasticity

Authors:
Zhuangyi Liu and Songmu Zheng

Journal:
Quart. Appl. Math. **54** (1996), 21-31

MSC:
Primary 73F15; Secondary 35B35, 35Q72, 73B30

DOI:
https://doi.org/10.1090/qam/1373836

MathSciNet review:
MR1373836

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The exponential stability of the semigroup associated with one-dimensional linear viscoelastic and thermoviscoelastic equations with several types of boundary conditions is proved for a class of kernel functions, including the weakly singular kernels.

**[BF]**J. A. Burns and R. H. Fabiano,*Feedback control of a hyperbolic partial differential equation with viscoelastic damping*, Control Theory and Advanced Technology, Vol. 5, No. 2, 1989, pp. 157-188**[BLZ]**J. A. Burns, Z. Liu, and S. Zheng,*On the energy decay of a linear thermoelastic bar*, J. Math. Anal. Appl. (to appear)**[D]**W. A. Day,*The decay of energy in a viscoelastic body*, Mathematika, Vol. 27, 1980, pp. 268-286**[Da1]**C. M. Dafermos,*On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity*, Arch. Rat. Mech. Anal.**29**, 241-271 (1968)**[Da2]**C. M. Dafermos,*Asymptotic stability in viscoelasticity*, Arch. Rat. Mech. Anal.**37**, 297-308 (1970)**[Da3]**C. M. Dafermos,*An abstract Volterra equation with applications to linear viscoelasticity*, J. Differential Equations**7**, 554-569 (1970)**[DM1]**W. Desch and R. K. Miller,*Exponential stabilization of Volterra integrodifferential equations in Hilbert space*, J. Differential Equations**70**, 366-389 (1987)**[DM2]**W. Desch and R. K. Miller,*Exponential stabilization of Volterra integral equations with singular kernels*, J. Integral Equations Appl.**1**, 397-433 (1988)**[FI1]**R. H. Fabiano and K. Ito,*Semigroup theory and numerical approximation for equations in linear viscoelasticity*, SIAM J. Math. Anal.**21**(2), 374-393 (1990)**[FI2]**R. H. Fabiano and K. Ito,*An approximation framework for equations in linear viscoelasticity with strongly singular kernels*, Quart. Appl. Math.**52**, 65-81 (1994)**[FL]**M. Fabrizio and B. Lazzari,*On the existence and asymptotic stability of solutions for linearly viscoelastic solids*, Arch. Rat. Mech. Anal.**116**, 139-152 (1991)**[GRT]**J. S. Gibson, I. G. Rosen, and G. Tao,*Approximation in control of thermoelastic systems*, SIAM J. Control and Optimization**30**5, 1163-1189 (1992)**[H]**S. W. Hansen,*Exponential energy decay in a linear thermoelastic rod*, J. Math. Anal. Appl.**167**, 429-442 (1992)**[Hu]**F. L. Huang,*Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces*, Ann. Differential Equations**1**(1), 43-56 (1985)**[HRW]**K. B. Hannsgen, Y. Renardy, and R. L. Wheeler,*Effectiveness and robustness with respect to time delays of boundary feedback stabilization in one-dimensional viscoelasticity*, SIAM J. Control Optim.**26**5, 1200-1233 (1988)**[HW1]**K. B. Hannsgen and R. L. Wheeler,*Viscoelastic and boundary feedback damping: Precise energy decay rates when creep modes are dominant*, J. Integral Equations Appl.**2**, 495-527 (1990)**[HW2]**K. B. Hannsgen and R. L. Wheeler,*Moment conditions for a Volterra integral equation in a Banach space*, Proceedings of Delay Differential Equations and Dynamical Systems, Claremont, Vol. 1475 of Springer Lecture Notes in Mathematics, Springer-Verlag, 1991, pp. 204-209**[J]**S. Jiang,*Global solution of the Neumann problem in one-dimensional nonlinear thermoelasticity*, preprint, 1991**[K]**J. U. Kim,*On the energy decay of a linear thermoelastic bar and plate*, SIAM J. Math. Anal.**23**(4), 889-899 (1992)**[L]**Z. Liu,*Approximation and control of a thermoviscoelastic system*, Ph.D. dissertation, Virginia Polytechnic Institute and State University, Department of Mathematics, August, 1989**[La]**J. Lagnese,*Boundary Stabilization of Thin Plates*, Vol. 10 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, 1989**[Le1]**G. Leugering,*On boundary feedback stabilization of a viscoelastic membrane*, Dynamics and Stability of Systems**4**(1), 71-79 (1989)**[Le2]**G. Leugering,*On boundary feedback stabilizability of a viscoelastic beam*, Proc. Roy. Soc. Edinburgh Sect. A**114**(1), 57-69 (1990)**[LZ]**Z. Liu and S. Zheng,*Exponential stability of the semigroup associated with a thermoelastic system*, Quart. Appl. Math.**51**, 535-545 (1993)**[Na]**C. B. Navaro,*Asymptotic stability in linear thermoviscoelasticity*, J. Math. Appl.**65**, 399-431 (1978)**[Pa]**A. Pazy,*Semigroups of Linear Operators and Applications to Partial Differential equations*, Springer, New York, 1983**[R]**J. E. M. Rivera,*Energy decay rate in linear thermoelasticity*, Funkcial Ekvac.**35**, 19-30 (1992)**[S]**M. Slemrod,*Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity*, Arch Rat. Mech. Anal.**76**, 97-133 (1981)**[Sh]**Y. Shibata,*Neumann problem for one-dimensional nonlinear thermoelasticity*, preprint, 1991

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73F15,
35B35,
35Q72,
73B30

Retrieve articles in all journals with MSC: 73F15, 35B35, 35Q72, 73B30

Additional Information

DOI:
https://doi.org/10.1090/qam/1373836

Article copyright:
© Copyright 1996
American Mathematical Society