Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A free boundary value problem related to the combustion of a solid: flux boundary conditions

Authors: John R. Cannon and Alec L. Matheson
Journal: Quart. Appl. Math. 55 (1997), 687-705
MSC: Primary 35R35; Secondary 35K57, 80A25
DOI: https://doi.org/10.1090/qam/1486543
MathSciNet review: MR1486543
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We demonstrate the existence, uniqueness, and continuous dependence upon the data for the solution $ \left( u, v, s \right)$ of the free boundary value problem:

$\displaystyle {u_t} = \alpha {u_{xx}}, \qquad {v_t} = \beta {v_{xx,}} \qquad 0 < x < s\left( t \right), \qquad 0 < t \le T$


$\displaystyle u\left( x, 0 \right) = \phi \left( x \right), \qquad v\left( x, 0 \right) = \psi \left( x \right), \qquad 0 \le x \le s\left( 0 \right) = b$


$\displaystyle - \alpha {u_x}\left( 0, t \right) = f\left( t \right), \qquad - \beta {v_x}\left( 0, t \right) = g\left( t \right), \qquad 0 < t \le T$


$\displaystyle \alpha {u_x}\left( s\left( t \right), t \right) = - \left( \gamma... ... s\left( t \right), t \right) \right)\dot s\left( t \right), \qquad 0 < t \le T$


$\displaystyle \dot s\left( t \right) = \nu \left( v\left( s\left( t \right), t ... ...\right)F\left( u\left( s\left( t \right), t \right) \right), \qquad 0 < t \le T$

, where $ \alpha , \beta , \gamma , \delta $, and $ \mu $ are positive constants related to the physical constants.

References [Enhancements On Off] (What's this?)

  • [C] John Rozier Cannon, The one-dimensional heat equation, Encyclopedia of Mathematics and its Applications, vol. 23, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. With a foreword by Felix E. Browder. MR 747979
  • [CCF] John R. Cannon, James C. Cavendish, and Antonio Fasano, A free boundary-value problem related to the combustion of a solid, SIAM J. Appl. Math. 45 (1985), no. 5, 798–809. MR 804007, https://doi.org/10.1137/0145047
  • [CL] J. R. Cannon and Yan Ping Lin, A free boundary value problem related to the combustion of a solid: first initial-boundary value, Differential equations and applications, Vol. I, II (Columbus, OH, 1988) Ohio Univ. Press, Athens, OH, 1989, pp. 109–121. MR 1026123
  • [F] A. Fasano, A free boundary problem in combustion, Nonlinear parabolic equations: qualitative properties of solutions (Rome, 1985) Pitman Res. Notes Math. Ser., vol. 149, Longman Sci. Tech., Harlow, 1987, pp. 103–109. MR 901097
  • [FR] Avner Friedman, Free boundary problems for parabolic equations. I. Melting of solids., J. Math. Mech. 8 (1959), 499–517. MR 0144078
  • [LC] Zhi Yuan Liang and Hong Cheng, A class of free boundary problems with two boundaries arising in combustion of solids, J. Harbin Inst. Tech. 24 (1992), no. 2, 1–6 (Chinese, with English and Chinese summaries). MR 1178246

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35R35, 35K57, 80A25

Retrieve articles in all journals with MSC: 35R35, 35K57, 80A25

Additional Information

DOI: https://doi.org/10.1090/qam/1486543
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society