Influence of natural convection on stability of reaction fronts in liquids

Authors:
M. Garbey, A. Taïk and V. Volpert

Journal:
Quart. Appl. Math. **56** (1998), 1-35

MSC:
Primary 76E06; Secondary 76E15, 76V05, 80A32

DOI:
https://doi.org/10.1090/qam/1604868

MathSciNet review:
MR1604868

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the influence of natural convection on stability of reaction fronts in liquids. In our previous article [6] we considered the case where the reactants were in a liquid phase and the product of the reaction was solid. In this paper we study the case where both of them are liquid. We carry out a linear stability analysis and show that the results are essentially different compared to the case of a solid product.

**[1]**A. P. Aldushin and S. G. Kasparyan,*Thermodiffusional instability of a combustion front*, Soviet Physics-Doklady, Akademii Nauk SSSR (5)**24**, 29 (1979)**[2]**G. I. Barenblatt, Ya. B. Zeldovich, and A. G. Istratov,*Diffusive-thermal stability of a laminar flame*, Zh. Prikl. Mekh. Tekh. Fiz. (4)**21**(1962) (in Russian)**[3]**P. Clavin,*Dynamic behavior of premixed flame fronts in laminar and turbulent flows*, Progr. Energy Comb. Sci.**11**, 1-59 (1985)**[4]**F. Desprez and M. Garbey,*Numerical simulation of a combustion problem on a Paragon Machine*, to appear in Parallel Computing**[5]**D. A. Frank-Kamenetskii,*Diffusion and Heat Transfer in Chemical Kinetics*, Plenum Press, New York, 1969**[6]**M. Garbey, A. Taïk, and V. Volpert,*Linear stability analysis of reaction fronts in liquids*, Quart. Appl. Math.**54**, 225-247 (1996) MR**1388014****[7]**A. G. Istratov and V. B. Librovich,*Effect of the transfer processes on stability of a planar flame front*, J. Appl. Math. Mech. (3)**30**, 451-466 (1966) (in Russian)**[8]**L. D. Landau and E. M. Lifshitz,*Fluid Mechanics*, Pergamon, Oxford and New York, 1987 MR**961259****[9]**O. Manley and M. Marion,*Attractor dimension for a simple premixed flame propagation model*, Combustion Sci. and Tech.**88**, 15 32 (1992)**[10]**M. Marion,*Attractors and Turbulence for some Combustion Models*, Mathematics and its Applications, vol. 35, to appear MR**1119794****[11]**S. B. Margolis, H. G. Kaper, G. K. Leaf, and B. J. Matkowsky,*Bifurcation of pulsating and spinning reaction fronts in condensed two-phase combustion*, Combustion Sci. and Tech.**43**, 127-165 (1985)**[12]**S. B. Margolis,*An asymptotic theory of condensed two-phase flame propagation*, SIAM J. Appl. Math.**43**, 351-369 (1983) MR**700343****[13]**M. Matalon and B. J. Matkowsky,*Flames in fluids: Their interaction and stability*, Combustion Science and Tech.**34**, 295-316 (1983)**[14]**B. J. Matkowsky and G. I. Sivashinsky,*Propagation of a pulsating reaction front in solid fuel combustion*, SIAM J. Appl. Math.**35**, 465-478 (1978) MR**507948****[15]**B. J. Matkowsky and G. I. Sivashinsky,*Acceleration effects on the stability of flame propagation*, SIAM J. Appl. Math.**37**, 669-685 (1979) MR**549148****[16]**B. J. Matkowsky and G. I. Sivashinsky,*An asymptotic derivation of two models in flame theory associated with the constant density approximation*, SIAM J. Appl. Math.**37**, 686-699 (1979) MR**549149****[17]**A. H. Nayfeh,*Perturbation Methods*, Wiley, New York, 1973 MR**0404788****[18]**B. V. Novozhilov,*The rate of propagation of the front of an exothermic reaction in a condensed phase*, Proc. Academy Sci. USSR, Phys. Chem. Sect.**141**, 836-838 (1961)**[19]**J. A. Pojman, R. Graven, A. Khan, and W. West,*Convective instabilities in traveling fronts of addition polymerization*, J. Physical Chemistry**96**, 7466-7472 (1992)**[20]**J. A. Pojman and I. R. Epstein,*Convective effects on chemical waves. 1. Mechanisms and stability criteria*, J. Phys. Chem. (12)**94**, 4966-4972 (1990)**[21]**J. A. Pojman, I. R. Epstein, T. J. McManus, and K. Scowalter,*Convective effects on chemical waves. 2. Simple convection in the iodate-arsenous acid system*, J. Phys. Chem. (3)**95**, 1299-1306 (1991)**[22]**K. G. Shkadinsky, B. I. Khaikin, and A. G. Merzhanov,*Propagation of a pulsating exothermic reaction front in condensed phase*, Combustion, Explosion, and Shock Waves**7**, 15 (1971)**[23]**D. A. Vasquez, J. W. Wilder, and B. F. Edwards,*Hydrodynamic instability of chemical waves*, J. Chem. Phys. (3)**98**, 2138-2143 (1993)**[24]**D. A. Vasquez, B. F. Edwards, and J. W. Wilder,*Onset of convection for autocatalytic reaction fronts: Laterally bounded systems*, Physical Review A**43**, 6694-6699 (1991)**[25]**H. J. Viljoen, J. E. Gatica, and V. Hlavacek,*Bifurcation analysis of chemically driven convection*, Chem. Eng. Sci. (2)**45**, 503-517 (1990)**[26]**Vit. A. Volpert, VI. A. Volpert, and J. A. Pojman,*Effect of thermal expansion on stability of reaction front propagation*, Chem. Eng. Sci.**49**, No. 14, 2385-2388 (1994)**[27]**J. W. Wilder, B. F. Edwards, D. A. Vasquez, and G. I. Sivashinksy,*Derivation of a nonlinear front evolution equation for chemical waves involving convection*, Physica D,**73**, 217-226 (1994)**[28]**Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze,*The Mathematical Theory of Combustion and Explosions*, Consultants Bureau, New York, 1985 MR**781350****[29]**Ya. B. Zeldovich and D. A. Frank-Kamenetsky,*Theory of thermal propagation of flames*, Zh. Fiz. Khim.**12**, 100 (1938)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76E06,
76E15,
76V05,
80A32

Retrieve articles in all journals with MSC: 76E06, 76E15, 76V05, 80A32

Additional Information

DOI:
https://doi.org/10.1090/qam/1604868

Article copyright:
© Copyright 1998
American Mathematical Society