Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



An approximation theory for optimum sheets in unilateral contact

Authors: Joakim Petersson and Jaroslav Haslinger
Journal: Quart. Appl. Math. 56 (1998), 309-325
MSC: Primary 74P05; Secondary 74M15, 74S05
DOI: https://doi.org/10.1090/qam/1622499
MathSciNet review: MR1622499
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give an approximation theory for the optimum variable thickness sheet problem considered in [1] and [2]. This problem, which is a stiffness maximization of an elastic continuum in unilateral contact, admits complete material removal, i.e., the design variable is allowed to take zero values.

References [Enhancements On Off] (What's this?)

  • [1] M. P. Rossow and J. E. Taylor, A finite element method for the optimal design of variable thickness sheets, AIAA J. 11, 1566-1568 (1973)
  • [2] J. Petersson, On stiffness maximization of variable thickness sheet with unilateral contact, Quart. Appl. Math. 54, 541-550 (1996) MR 1402408
  • [3] J. E. Taylor, Maximum strength elastic structural design, J. Engrg. Mech. Div., Proc. ASCE 95(EM3), 653-663 (1969)
  • [4] W. Prager and J. E. Taylor, Problems of optimal structural design, Trans. J. Appl. Mech. ASME 35 (1), 102-106 (1968)
  • [5] R. L. Benedict, Maximum stiffness design for elastic bodies in contact, J. Mech. Design 104, 825-830 (1982)
  • [6] J. Petersson, Stiffness optimization of general structure in Signorini-type contact, Contact Mechanics, edited by M. Raous, M. Jean and J. J. Moreau, Plenum Press, New York, 1995, pp. 41-48
  • [7] J. Céa and K. Malanowski, An example of a max-min problem in partial differential equations, SIAM J. Control 8, 305-316 (1970) MR 0274915
  • [8] M. P. Bendsøe and C. A. Mota Soares (editors), Topology Design of Structures, Kluwer Academic Publishers, Dordrecht, 1993 MR 1250185
  • [9] M. P. Bendsøe, Optimization of Structural Topology, Shape, and Material, Springer-Verlag, Berlin, 1995 MR 1350791
  • [10] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 MR 1115205
  • [11] A. Klarbring, A. Mikelić, and M. Shillor, The rigid punch problem with friction, Internat. J. Engrg. Sci. 29, 751-768 (1991) MR 1107199
  • [12] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988 MR 961258
  • [13] J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape Design, John Wiley and Sons, London, 1988 MR 982710
  • [14] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovišek, Solution of Variational Inequalities in Mechanics, Springer-Verlag, New York, 1988
  • [15] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Company, Amsterdam, 1978 MR 0520174
  • [16] J. Haslinger, Finite element analysis for unilateral problems with obstacles on the boundary, Apl. Mat. 22, 180-187 (1977) MR 0440956
  • [17] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984 MR 737005
  • [18] J. Petersson and M. Patriksson, Topology optimization of sheets in contact by a subgradient method, Internat. J. Numer. Methods Engrg. 40, 1295-1321 (1997) MR 1449228
  • [19] C. S. Jog and R. B. Haber, Checkerboard and other spurious modes in solutions to distributed-parameter and topology design problems, WCSMO-1: First World Congress of Structural and Multidisciplinary Optimization, edited by N. Olhoff and G. I. N. Rozvany, Elsevier Science Ltd., Oxford, 1995, pp. 237-242
  • [20] A. Diaz and O. Sigmund, Checkerboard patterns in layout optimization, Struct. Optim. 10, 40-45 (1995)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74P05, 74M15, 74S05

Retrieve articles in all journals with MSC: 74P05, 74M15, 74S05

Additional Information

DOI: https://doi.org/10.1090/qam/1622499
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society