Equilibrium vortex configurations in domains with boundary

Author:
Kenneth G. Miller

Journal:
Quart. Appl. Math. **56** (1998), 553-568

MSC:
Primary 76B47

DOI:
https://doi.org/10.1090/qam/1632318

MathSciNet review:
MR1632318

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a stable configuration of point vortices for steady two-dimensional inviscid, incompressible fluid flow in a domain , it is shown that there is another stable configuration of stationary vortices in with vortices near the original vortices plus additional vortices near any points on the boundary where the speed of the original flow is a nonzero relative minimum.

**[1]**M. S. Berger and L. E. Fraenkel,*Nonlinear desingularization in certain free-boundary problems*, Commun. Math. Phys.**77**, 149-172 (1980) MR**589430****[2]**A. R. Elcrat, C. Hu, and K. G. Miller,*Equilibrium configurations of point vortices for channel flow past interior obstacles*, European J. Mech. B Fluids**16**, 277-292 (1997) MR**1439068****[3]**A. R. Elcrat and K. G. Miller,*Rearrangements in steady multiple vortex flows*, Comm. Partial Differential Equations**20**, 1481-1490 (1995) MR**1349221****[4]**B. Gustafsson,*On the motion of a vortex in two-dimensional flow of an ideal fluid in simply and multiply connected domains*, Research Report, Dept. of Mathematics, Royal Institute of Technology, Stockholm, 1979**[5]**M. K. Huang and C. Y. Chow,*Trapping a free vortex by Joukowski airfoils*, AIAA Journal**20**, 292-298 (1982)**[6]**C. C. Lin,*On the Motion of Vortices in Two Dimensions*, Univ. Toronto Appl. Math. Series, no. 5, Toronto Univ. Press, 1943 MR**0008204****[7]**K. G. Miller,*Stationary corner vortex configurations*, Z. angew. Math. Phys.**47**, 39-56 (1996) MR**1408670****[8]**P. G. Saffman,*Vortex Dynamics*, Cambridge University Press, Cambridge, 1992 MR**1217252****[9]**P. G. Saffman and J. Sheffield,*Flow over a wing with an attached free vortex*, Studies in Applied Math.**57**, 107-117 (1977) MR**0462150****[10]**B. Turkington,*On steady vortex flow in two dimensions, I*, Comm. Partial Differential Equations**8**, 999-1030 (1983) MR**702729****[11]**B. Turkington and A. Eydeland,*An iterative method for computing steady vortex flow systems*, Proceedings of the Workshop on Mathematical Aspects of Vortex Dynamics (R. Caflisch, ed.), SIAM, Philadelphia, 1989, pp. 80-87 MR**1001791****[12]**Y. H. Wan,*Desingularization of systems of point vortices*, Phys. D**32**, 277-295 (1988) MR**969034**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76B47

Retrieve articles in all journals with MSC: 76B47

Additional Information

DOI:
https://doi.org/10.1090/qam/1632318

Article copyright:
© Copyright 1998
American Mathematical Society