Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Equilibrium vortex configurations in domains with boundary

Author: Kenneth G. Miller
Journal: Quart. Appl. Math. 56 (1998), 553-568
MSC: Primary 76B47
DOI: https://doi.org/10.1090/qam/1632318
MathSciNet review: MR1632318
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a stable configuration of point vortices for steady two-dimensional inviscid, incompressible fluid flow in a domain $ D$, it is shown that there is another stable configuration of stationary vortices in $ D$ with vortices near the original vortices plus additional vortices near any points on the boundary where the speed of the original flow is a nonzero relative minimum.

References [Enhancements On Off] (What's this?)

  • [1] M. S. Berger and L. E. Fraenkel, Nonlinear desingularization in certain free-boundary problems, Commun. Math. Phys. 77, 149-172 (1980) MR 589430
  • [2] A. R. Elcrat, C. Hu, and K. G. Miller, Equilibrium configurations of point vortices for channel flow past interior obstacles, European J. Mech. B Fluids 16, 277-292 (1997) MR 1439068
  • [3] A. R. Elcrat and K. G. Miller, Rearrangements in steady multiple vortex flows, Comm. Partial Differential Equations 20, 1481-1490 (1995) MR 1349221
  • [4] B. Gustafsson, On the motion of a vortex in two-dimensional flow of an ideal fluid in simply and multiply connected domains, Research Report, Dept. of Mathematics, Royal Institute of Technology, Stockholm, 1979
  • [5] M. K. Huang and C. Y. Chow, Trapping a free vortex by Joukowski airfoils, AIAA Journal 20, 292-298 (1982)
  • [6] C. C. Lin, On the Motion of Vortices in Two Dimensions, Univ. Toronto Appl. Math. Series, no. 5, Toronto Univ. Press, 1943 MR 0008204
  • [7] K. G. Miller, Stationary corner vortex configurations, Z. angew. Math. Phys. 47, 39-56 (1996) MR 1408670
  • [8] P. G. Saffman, Vortex Dynamics, Cambridge University Press, Cambridge, 1992 MR 1217252
  • [9] P. G. Saffman and J. Sheffield, Flow over a wing with an attached free vortex, Studies in Applied Math. 57, 107-117 (1977) MR 0462150
  • [10] B. Turkington, On steady vortex flow in two dimensions, I, Comm. Partial Differential Equations 8, 999-1030 (1983) MR 702729
  • [11] B. Turkington and A. Eydeland, An iterative method for computing steady vortex flow systems, Proceedings of the Workshop on Mathematical Aspects of Vortex Dynamics (R. Caflisch, ed.), SIAM, Philadelphia, 1989, pp. 80-87 MR 1001791
  • [12] Y. H. Wan, Desingularization of systems of point vortices, Phys. D 32, 277-295 (1988) MR 969034

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76B47

Retrieve articles in all journals with MSC: 76B47

Additional Information

DOI: https://doi.org/10.1090/qam/1632318
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society