Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The beginnings of applied mathematics after the Second World War


Author: Peter D. Lax
Journal: Quart. Appl. Math. 56 (1998), 607-615
MSC: Primary 01A60
DOI: https://doi.org/10.1090/qam/1668731
MathSciNet review: MR1668731
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. Cramér, Études sur la sommation des series de Fourier, Arkiv för Matematik 13, #20 (1919)
  • [2] P. Deift and K. McLaughlin, A continuum limit of the Toda lattice, Memoirs Amer. Math. Soc. 131, no. 624 (1988) MR 1407901
  • [3] H. Flaschka, On the Toda lattice. II. Inverse-scattering solution, Progr. Theoret. Phys. 51, 703-716 (1974) MR 0408648
  • [4] E. Fermi, J. Pasta, and S. Ulam, Studies on nonlinear problems I, Nonlinear Wave Motion, Lectures in Appl. Math., vol. 15, Amer. Math. Soc., Providence, RI, 1974 MR 0336014
  • [5] J. Goodman and P. D. Lax, On dispersive difference schemes I, Comm. Pure Appl. Math. 41, 591-613 (1988) MR 948073
  • [6] D. Gottlieb and C.-W. Shu, On the Gibbs phenomenon and its resolution, SIAM Review 39, 644-668 (1997) MR 1491051
  • [7] B. Hayes, Binary modulated oscillations in a semi-discrete version of Burgers equation, Physica D 106, 287-313 (1997) MR 1462316
  • [8] B. L. Holian and G. K. Straub, Molecular dynamics of shock waves in one-dimensional chains, Phys. Rev. B 18, 1593-1608 (1978)
  • [9] B. L. Holian, H. Flaschka, and K. McLaughlin, Shock waves in the Toda lattice: Analysis, Phys. Rev. A 24, 2595-2623 (1981) MR 635742
  • [10] T. Hou and P. D. Lax, Dispersive approximations in fluid dynamics, Comm. Pure Appl. Math. 44, 1-40 (1991) MR 1077912
  • [11] S. Kamvissis, On the Toda shock problem, Physica D 65, 242-266 (1993) MR 1222811
  • [12] P. D. Lax, On Dispersive Difference Schemes, Physica 18D, North-Holland, Amsterdam, 1986, pp. 250-254 MR 838330
  • [13] P. D. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13, 217-237 (1960) MR 0120774
  • [14] P. D. Lax and D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, Comm. Pure Appl. Math., I: pp. 253-290, II: pp. 571-593, III: pp. 160-169 (1983)
  • [15] C. D. Levermore and J.-G. Liu, Large oscillations arising in a dispersive numerical scheme, Physica D 99, 191-216 (1996) MR 1439458
  • [16] J. von Neumann, Proposal and analysis of a new numerical method in the treatment of hydrodynamical shock problems, Collected Works, vol. 6, Pergamon Press, London, 1963
  • [17] J. von Neumann and H. H. Goldstine, On the principles of large scale computing machines, Collected Works, vol. 5, Pergamon Press, London, 1963
  • [18] J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys. 21, 232-237 (1950) MR 0037613
  • [19] R. R. Rosales and C. V. Turner, The small dispersion limit for a nonlinear semidiscrete system of equations, Stud. Appl. Math. 99, 205-254 (1997) MR 1468971
  • [20] O. Szász, Gibbs phenomenon for Hausdorff means, Trans. Amer. Math. Soc. 69, 1077-1093 (1950)
  • [21] M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin-New York, 1981 MR 618652
  • [22] J. G. Trulio and K. R. Trigger, Numerical Solution of One Dimensional Hydrodynamical Shock Problems, UCRL Report 6522, 1961
  • [23] S. Venakides, P. Deift, and R. Oba, The Toda shock problem, Comm. Pure Appl. Math. 44, 1171-1242 (1991) MR 1127056
  • [24] A. Zygmund, Trigonometric Series, second edition, Cambridge University Press, Cambridge, 1959

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 01A60

Retrieve articles in all journals with MSC: 01A60


Additional Information

DOI: https://doi.org/10.1090/qam/1668731
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society