Mathematics applied in fluid motion

Author:
J. T. Stuart

Journal:
Quart. Appl. Math. **56** (1998), 787-796

MSC:
Primary 76F99; Secondary 76D99, 76E99

DOI:
https://doi.org/10.1090/qam/1668738

MathSciNet review:
MR1668738

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Over many decades, indeed for more than a century, fluid dynamics has been the subject of many beautiful experiments and has been a proving ground for a wealth of mathematical theories, both linear and nonlinear.

**[1]**D. J. Benney and R. F. Bergeron,*A new class of nonlinear waves in parallel flows*, Studies Appl. Math.**48**, 181-204 (1969)**[2]**B. Cantwell, D. Coles, and P. Dimotakis,*Structure and entrainment in the plane of symmetry of a turbulent spot*, J. Fluid Mech.**87**, 641-672 (1978)**[3]**V. W. Ekman,*On the change from laminar to turbulent motion in liquids*, Ark. Mat. Astr. Fys.**6**, No. 12 (1910)**[4]**H. W. Emmons and A. E. Bryson,*The laminar-turbulent transition in a boundary layer*, Proc. 1st U.S. National Cong. Appl. Mech., 859-868 (1951) MR**0052931****[5]**M. Gaster,*The development of a two-dimensional wave packet in a growing boundary layer*, Proc. Roy. Soc. A**384**, 317-332 (1982)**[6]**D. Henningsen, P. Spalart, and J. Kim,*Numerical simulations of turbulent spots in plane Poiseuille flow*, Phys. Fluids**30**, 2914-2917 (1987)**[7]**P. S. Klebanoff, K. D. Tidstrom, and L. M. Sargent,*The three-dimensional nature of boundary-layer instability*, J. Fluid Mech.**12**, 1-34 (1962)**[8]**O. Reynolds,*An experimental investigation of the circumstances which determine whether the motion of the water shall be direct or sinuous, and of the law of resistance in parallel channels*, Phil. Trans. Roy. Soc. A**174**, 935-982 (1883)**[9]**L. Rosenhead, editor,*Laminar Boundary Layers*, Clarendon Press, Oxford, 1963 MR**0155499****[10]**G. B. Schubauer and P. S. Klebanoff,*Contributions on the mechanics of boundary layer transition*, Proc. Sympos. Boundary Layer Effects in Aerodynamics, Nat. Phys. Lab. Teddington. Also Rep. Nat. Adv. Comm. Aero. Washington, No. 1289, 1955**[11]**G. B. Schubauer and H. K. Skramstad,*Laminar boundary layer oscillations and transition on a flat plate*, Rep. Nat. Adv. Comm., Washington, No. 909. Also J. Res. Nat. Bur. Stand. Washington,**38**, 251-292, and J. Aero. Sci.**14**, 69-78 (1947)**[12]**J. T. Stuart,*Instability and transition in pipes and channels*, In ``Transition and Turbulence'' (ed. R. E. Meyer), Academic Press, 1981, pp. 77-94 MR**636118****[13]**J. T. Stuart,*Evolution of vorticity in flow in a pipe*, Exptl. Thermal. Fluid Sci.**13**, 206-210 (1996)**[14]**J. T. Stuart,*Singularities in three-dimensional compressible Euler flows with vorticity*, Theor. Comp. Fluid Dyn.**10**, 385-391 (1998)**[15]**T. Tatsumi,*Stability of the laminar inlet-flow prior to the formation of Poiseuille régime*, I, II, J. Phys. Soc. Japan**7**, 489-495, 495-502 (1952) MR**0051077****[16]**G. I. Taylor,*Dispersion of soluble matter in solvent flowing slowly through a tube*, Proc. Roy. Soc. A**219**, 186-203 (1953)**[17]**G. I. Taylor,*The dispersion of matter in turbulent flow through a pipe*, Proc. Roy. Soc. A**223**, 446-468 (1954)**[18]**I. J. Wygnanski and F. H. Champagne,*On transition in a pipe. Part*1.*The origin of puffs and slugs and the flow in a turbulent slug*, J. Fluid Mech.**59**, 281-335 (1973)**[19]**I. J. Wygnanski, M. Sokolov, and D. Friedman,*On transition in a pipe. Part*2.*The equilibrium puff*, J. Fluid Mech.**69**, 283-304 (1975)**[20]**F. T. Smith and R. J. Bodonyi,*Amplitude-dependent neutral modes in the Hagen-Poiseuille flows through a circular pipe*, Proc. Roy. Soc.**A384**, 463-489 (1982)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76F99,
76D99,
76E99

Retrieve articles in all journals with MSC: 76F99, 76D99, 76E99

Additional Information

DOI:
https://doi.org/10.1090/qam/1668738

Article copyright:
© Copyright 1998
American Mathematical Society