Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Sharp stability estimates for quasi-autonomous evolution equations of hyperbolic type


Author: Philippe Souplet
Journal: Quart. Appl. Math. 57 (1999), 55-85
MSC: Primary 34G20; Secondary 35L99
DOI: https://doi.org/10.1090/qam/1672175
MathSciNet review: MR1672175
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the energy decay of the difference of two solutions for dissipative evolution problems of the type:

$\displaystyle u'' + Lu + g(u') = h(t), \qquad t \ge 0 ,$

including wave and plate equations and ordinary differential equations. In the general case, when the damping term g behaves like a power of the velocity ú, the energy decreases like a negative power of time, multiplied by a constant depending on the initial energies. We provide estimates on these constants and prove their optimality. In the special case of the ordinary differential equation with periodic forcing, we establish, relying on a controllability-like technique, that the decay is in fact exponential, even under very weak damping.

References [Enhancements On Off] (What's this?)

  • [1] N. Bogolioubov and Y. Mitropolsky, Asymptotic methods in the theory of nonlinear oscillations, Gordon and Breach Science Publ., New York, Hindustan Publ. Corp., Delhi, 1961
  • [2] F. Browder and W. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72, 571-575 (1966) MR 0190745
  • [3] A. Carpio, Sharp estimates of the energy for the solutions of some dissipative second order evolution equations, Potential Analysis 1, 265-289 (1992) MR 1245231
  • [4] A. Carpio, Existence of global solutions to some nonlinear dissipative wave equations, J. Math. Pures Appl. 73, 471-488 (1994) MR 1300985
  • [5] E. Coddington and N. Levinson, Ordinary Differential Equations, McGraw-Hill, 1955 MR 0069338
  • [6] A. Haraux, Semi-linear hyperbolic problems in bounded domains, Mathematical Reports, Vol. 3, part 1, J. Dieudonné, Editor, Harwood Academic Publishers, Gordon and Breach, 1987 MR 1078761
  • [7] A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugaliae Mathematica 46, 3, 245-248 (1989) MR 1021188
  • [8] A. Haraux and E. Zuazua, Decay estimates for some nonlinear evolution equations, Arch. Rat. Mech. Anal. 100, 2, 191-206 (1988) MR 913963
  • [9] Ph. Souplet, Étude des solutions globales de certaines équations différentielles ordinaires du second ordre non linéaires, Comptes-rendus de l'Académie des Sciences, t. 313, Série I, 365-370 (1991) MR 1126415
  • [10] Ph. Souplet, Existence of exceptional growing-up solutions for a class of nonlinear second order ordinary differential equations, Asymptotic Analysis 11, 185-207 (1995) MR 1350406
  • [11] Ph. Souplet, Propriétés globales de quelques équations d'évolution non linéaires du second ordre, Thèse, Université Pierre et Marie Curie, 1994

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34G20, 35L99

Retrieve articles in all journals with MSC: 34G20, 35L99


Additional Information

DOI: https://doi.org/10.1090/qam/1672175
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society