Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A new model for acoustic-structure interaction and its exponential stability

Authors: Fariba Fahroo and Chunming Wang
Journal: Quart. Appl. Math. 57 (1999), 157-179
MSC: Primary 76Q05; Secondary 74F10, 93C20
DOI: https://doi.org/10.1090/qam/1672195
MathSciNet review: MR1672195
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new model for the interaction between the acoustic wave in an enclosed air cavity and the transversal motion of a flexible beam is proposed in this paper. This new boundary condition for the coupled wave and Euler-Bernoulli beam equations introduces sufficient damping of the energy of the system to gain uniform exponential stability. Careful physical justification of the boundary condition is based upon well-established theoretical results in acoustics. The estimate of the energy decay rate is obtained using a multiplier technique.

References [Enhancements On Off] (What's this?)

  • [1] G. Avalos, The exponential stability of a coupled hyperbolic/parabolic system arising in structural acoustics, IMA Preprint Series #1344, October, 1995, University of Minnesota MR 1401615
  • [2] H. T. Banks, W. Fang, R. J. Silcox, and R. C. Smith, Approximation methods for control of structural acoustic models with piezoceramic actuators, Journal of Intelligent Material Systems and Structures, Vol. 4, pp. 98-116 (1993)
  • [3] H. T. Banks and K. Ito, A unified framework for approximations in inverse problems for distributed parameter systems, Control Theory and Advanced Technology 4, 73-90 (1988) MR 941397
  • [4] H. T. Banks, K. Ito, and C. Wang, Exponentially stable approximations of weakly damped wave equations, in Estimation and Control of Distributed Parameter Systems (W. Desch, F. Kappel, and K. Kunisch, Eds.), Birkhäuser, 1991, pp. 1-33 MR 1155634
  • [5] H. T. Banks, S. L. Keeling, R. J. Silcox, and C. Wang, Linear quadratic tracking problem in Hilbert space: Application to optimal active noise suppression, in ``Proc. 5th IFAC Sympos. on Control of DPS'' (A. El-Jai and M. Amouroux, Eds.), pp. 17-22, Perpignan, France, June, 1989
  • [6] H. T. Banks and C. Wang, Optimal feedback control of infinite-dimensional parabolic evolution systems: approximation techniques, SIAM J. Control and Optim. 27, 1181-1219 (1989) MR 1009343
  • [7] G. Chen, A note on the boundary stabilization of the wave equation, SIAM J. Control and Optim. 19, 106-113 (1981) MR 603083
  • [8] J. S. Gibson, The Riccati integral equations for optimal control problems on Hilbert space, SIAM J. Control and Optim. 17, 537-565 (1979) MR 534423
  • [9] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985 MR 775683
  • [10] P. Grisvard, Controlabilité exacte des solutions de certains problémes mixtes pour l'équation des ondes dans un polygone et polyèdre, Math. Pures et Appl. 68, 215-259 (1989) MR 1010769
  • [11] M. G. Krein, Linear Differential Equations in Banach Space, Transl. Math. Monographs, Vol. 29, American Mathematical Society, Providence, RI, 1971 MR 0342804
  • [12] J. E. Lagnese, Decay of solutions of the wave equation in a bounded region with boundary dissipation, J. Diff. Equations 50, 163-182 (1983) MR 719445
  • [13] I. Lasiecka and R. Triggiani, Exponential uniform energy decay rates of the wave equation in a bounded region with $ {L_2}\left( 0, \infty ; {L_2}\left( \Gamma \right) \right)$-boundary feedback control in the Dirichlet boundary conditions, J. Differential Equations 66, 340-390 (1987) MR 876804
  • [14] I. Lasiecka and R. Triggiani, Riccati equations for hyperbolic partial differential equations with $ {L_2}\left( 0, T; {L_2}\left( \Gamma \right) \right)$-Dirichlet boundary controls, SIAM J. Control and Optim. 24, pp. 884-926 (1986) MR 854062
  • [15] I. Lasiecka and R. Triggiani, Algebraic Riccati equations with applications to boundary/point control problems: Continuous theory and approximation theory, preprint 1990 MR 1132440
  • [16] P. M. Morse and K. Uno Ingard, Theoretical Acoustics, Princeton University Press, Princeton, New Jersey, 1968
  • [17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983 MR 710486
  • [18] A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications, McGraw-Hill, New York, 1981
  • [19] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966 MR 0209834
  • [20] H. Tanabe, Equations of Evolution, Pitman, New York, 1979 MR 533824
  • [21] C. Wang, Linear quadratic optimal control of a wave equation with boundary damping and pointwise control input, J. Math. Analysis and Applications 192, 562-578 (1995) MR 1332228
  • [22] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987 MR 895589
  • [23] K. Yosida, Functional Analysis, 6th Edition, Springer-Verlag, Berlin, 1980 MR 617913

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76Q05, 74F10, 93C20

Retrieve articles in all journals with MSC: 76Q05, 74F10, 93C20

Additional Information

DOI: https://doi.org/10.1090/qam/1672195
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society