A model for the diffusion of populations in annular patchy environments

Authors:
G. Cui and H. I. Freedman

Journal:
Quart. Appl. Math. **57** (1999), 339-354

MSC:
Primary 92D25; Secondary 35Q80, 92D40

DOI:
https://doi.org/10.1090/qam/1686193

MathSciNet review:
MR1686193

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A system of reaction-diffusion differential equations is utilized to model the diffusion of a population through annular patches with different carrying capacities. In the case of continuous solutions with continuous flux, it is shown that a unique, positive steady-state solution exists. In the case of radially symmetric initial conditions, it is shown that all solutions of the Cauchy problem approach this steady-state solution. Models involving nonsymmetric initial conditions are also considered.

**[A]**S. Agmon,*Lectures on Elliptic Boundary Value Problems*, Van Nostrand, New York, 1965 MR**0178246****[AC1]**S. W. Ali and C. Cosner,*On the uniqueness of the positive steady-state for Lotka-Volterra models with diffusion*, J. Math. Anal. Appl.**168**, 329 341 (1992) MR**1175992****[AC2]**S. W. Ali and C. Cosner,*Methods for the effects of individual size and spatial scale on competition between species in heterogeneous environment*, Math. Biosci.**127**, 45-76 (1995)**[B]**G. Butkovskiy,*Green's Function and Transfer Functions Handbook*, Ellis Horwood Ltd., West Sussex, 1982**[CC1]**R. S. Cantrell and C. Cosner,*Diffusive logistic equations with indefinite weights: population models in disrupted environments*, Proc. Roy. Soc. Edinburgh**A112**, 293-318 (1989) MR**1014659****[CC2]**R. S. Cantrell and C. Cosner,*Diffusive logistic equations with indefinite weights: population models in disrupted environments*II, SIAM J. Math. Anal.**22**, 1043-1064 (1991) MR**1112065****[CC3]**R. S. Cantrell and C. Cosner,*Insular biogeographic theory and diffusion models in population dynamics*, Theor. Popu. Biol.**45**, 177-202 (1994)**[F]**H. I. Freedman,*Deterministic Mathematical Models in Population Ecology*, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 57, Marcel Dekker, New York, 1980 MR**586941****[FK]**H. I. Freedman and T. Krisztin,*Global stability in models of population dynamics with diffusion*I.*Patchy Environments*, Proc. Roy. Soc. Edinburgh**122A**, 69-84 (1992) MR**1190232****[FST]**H. I. Freedman, J. B. Shukla, and Y. Takeuchi,*Population diffusion in a two-patch environment*, Math. Biosci.**95**, 111-123 (1989) MR**1001295****[FW]**H. I. Freedman and J. Wu,*Steady-state analysis in a model for population diffusion in a multi-patch environment*, Nonlinear Anal. Theor. Meth. Appl.**18**, 517-542 (1992) MR**1154478****[Fr]**A. Friedman,*Partial Differential Equations*, Holt, Reinhart and Winston, New York, 1969 MR**0445088****[GL]**A. Goreiski and R. Logan,*Positive solutions of a class of biological models in a heterogeneous environment*, Bull. Austral. Math. Soc.**44**, 79 94 (1991) MR**1120396****[GNN]**B. Gidas, W. Ni, and L. Nirenberg,*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**, 209-243 (1979) MR**544879****[H]**D. Henry,*Geometric Theory of Semilinear Parabolic Equations*, Springer-Verlag, Heidelberg, 1981 MR**610244****[J]**F. John,*Partial Differential Equations*, Springer-Verlag, Heidelberg, 1982 MR**831655****[JY]**Z. Jiang and F. Yang,*Numerical Solutions of the Outer Boundary Problem of Partial Differential Equations*(Chinese), Tianjin Univ. Press, Tianjin, 1992**[K]**P. Kareiva,*Population dynamics in spatially complex environments: Theory and data*, Philos. Trans. Roy. Soc. London**B330**, 175 190 (1990)**[KF]**T. Krisztin and H. I. Freedman,*Global stability in models of population dynamics with diffusion*II:*Continuously varying environments*, Rocky Mountain J. Math.**24**, 155-163 (1994) MR**1270033****[L]**O. Lopes,*Radial and nonradial minimizers for some radially symmetric functions*, Elec. J. Diff. Equations**1996**, 1-14 (1996) MR**1375123****[P]**A. Pazy,*Semigroups of Linear Operators and Applications to Partial Differential Equations*, Springer-Verlag, Heidelberg, 1983 MR**710486****[PR]**S. W. Pacala and J. Roughgarden,*Spatial heterogeneity and interspecific competition*, Theor. Pop. Biol.**21**, 92-113 (1982) MR**662524****[PW]**M. Protter and H. Weinberger,*Maximum Principles in Differential Equations*, Prentice Hall, New Jersey, 1967 MR**0219861****[R]**H. Royden,*Real Analysis*, 3rd Edition, MacMillan, New York, 1988 MR**0151555****[SR]**N. Shigesada and J. Roughgarden,*The role of rapid dispersal in the population dynamics of competition*, Theor. Pop. Biol.**21**, 353-372 (1982) MR**667337**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
92D25,
35Q80,
92D40

Retrieve articles in all journals with MSC: 92D25, 35Q80, 92D40

Additional Information

DOI:
https://doi.org/10.1090/qam/1686193

Article copyright:
© Copyright 1999
American Mathematical Society