Saint Venant's principle in orthotropic planar elasticity: rates-of-diffusion for stress

Authors:
W. J. Stronge and M. Kashtalyan

Journal:
Quart. Appl. Math. **57** (1999), 741-755

MSC:
Primary 74G50; Secondary 74B05

DOI:
https://doi.org/10.1090/qam/1724303

MathSciNet review:
MR1724303

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For plane deformations generated by an arbitrary distribution of tractions applied in a small region on the boundary of an elastic half-plane, the rates-of-decay for displacements, stresses and strain energy density are obtained as functions of complexity of the load distribution. The rates-of-decay increase in proportion to the complexity of the load distribution; i.e., they increase with the order of the smallest nonvanishing moment of the traction distribution. In orthotropic materials the elastic moduli differ in two perpendicular directions of principal stiffness; in this case as the modulus ratio increases, the angular distributions of the displacement and energy density fields become channeled towards the direction of the larger elastic modulus.

**[1]**Yutaka Arimitsu, Kazumi Nishioka, and Toyomitsu Senda,*A study of Saint-Venant’s principle for composite materials by means of internal stress fields*, Trans. ASME J. Appl. Mech.**62**(1995), no. 1, 53–58. MR**1324773**, https://doi.org/10.1115/1.2895883**[2]**D. Durban and W. J. Stronge,*Plane strain incremental response and sensitivity of stretched plates*, European J. Mechanics - Solids**14**, 553-575 (1995)**[3]**G. C. Everstine and A. C. Pipkin,*Stress channeling in transversely isotropic composites*, J. Elasticity**2**, 335-339 (1971)**[4]**M. E. Gurtin,*The linear theory of elasticity*, Handbuch der Physik (ed. S. Flugge), 1973, pp. 190-207**[5]**C. O. Horgan,*Some remarks on Saint-Venant's principle for transversely isotropic composites*, J. of Elasticity**2**, 335-339 (1972)**[6]**C. O. Horgan,*Recent developments concerning Saint-Venant's principle: A second update*, Appl. Mech. Reviews**49**(10) , S101-111 (1996)**[7]**Cornelius O. Horgan and James K. Knowles,*Recent developments concerning Saint-Venant’s principle*, Adv. in Appl. Mech.**23**(1983), 179–269. MR**889288****[8]**C. O. Horgan and J. G. Simmonds,*Saint Venant end effects in composite structures*, Composites Engineering**3**, 279-286 (1994)**[9]**S. G. Lekhnitskii,*Theory of elasticity of an anisotropic elastic body*, Translated by P. Fern. Edited by Julius J. Brandstatter, Holden-Day, Inc., San Francisco, 1963. MR**0180018****[10]**X. Markenscoff,*Some remarks on the wedge paradox and Saint-Venant’s principle*, Trans. ASME J. Appl. Mech.**61**(1994), no. 3, 519–523. MR**1297749**, https://doi.org/10.1115/1.2901490**[11]**S. A. Matemilola, W. J. Stronge, and D. Durban,*Diffusion rate for stress in orthotropic materials*, ASME J. Appl. Mechanics**62**, 654-661 (1995)**[12]**R. von Mises,*On Saint-Venant's principle*, Bull. American Mathematical Society**51**, 555-562 (1945)**[13]**E. Sternberg,*On Saint-Venant's principle*, Quart. Appl. Math.**11**, 393-402 (1954)**[14]**W. J. Stronge and M. Kashtalyan,*St. Venant's principle for two-dimensional anisotropic elasticity*, Acta Mechanica**124**, 213-218 (1997)**[15]**R. A. Toupin,*Saint-Venant’s principle*, Arch. Rational Mech. Anal.**18**(1965), 83–96. MR**0172506**, https://doi.org/10.1007/BF00282253

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
74G50,
74B05

Retrieve articles in all journals with MSC: 74G50, 74B05

Additional Information

DOI:
https://doi.org/10.1090/qam/1724303

Article copyright:
© Copyright 1999
American Mathematical Society