Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Breakdown of smooth solutions in one-dimensional magnetostriction

Author: Harumi Hattori
Journal: Quart. Appl. Math. 58 (2000), 1-16
MSC: Primary 35Q72; Secondary 35B65, 74F15, 74H99, 78A55
DOI: https://doi.org/10.1090/qam/1738555
MathSciNet review: MR1738555
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss a hyperbolic aspect of magnetostriction. The equations governing the longitudinal motion consist of the nonlinear wave equations and the rate equations for the motion of spin for the magnetic moment. We show that the breakdown of smooth solutions will take place in finite time even if the initial data are smooth.

References [Enhancements On Off] (What's this?)

  • [1] W.F. Brown, Micromagnetics, John Wiley and Sons, New York, 1963
  • [2] W. F. Brown, Magnetoelastic Interactions, Springer Tracts in Natural Philosophy, Vol. 9, Springer-Verlag, New York, 1966
  • [3] C. M. Dafermos, Development of singularities in the motion of materials with fading memory, Arch. Rational Mech. Anal. 91, 193-205 (1986) MR 806001
  • [4] C. M. Dafermos and L. Hsiao, Development of singularities in solutions of the equations of nonlinear thermoelasticity, Quart. Appl. Math. 44, 463-474 (1986) MR 860899
  • [5] H. Hattori, Breakdown of smooth solutions in dissipative nonlinear hyperbolic equations, Quart. Appl. Math. 40, 113-127 (1982) MR 666668
  • [6] W. J. Hrusa and S. A. Messaoudi, On formation of singularities in one-dimensional nonlinear thermoelasticity 111, 135-151 (1990) MR 1057652
  • [7] R. D. James and D. Kinderlehrer, A theory of magnetostriction with application to TbDyFe$ _{2}$, Phil. Mag., to appear
  • [8] D. Kinderlehrer and L. Ma, The hysteretic event in the computation of magnetization and magnetostriction, preprint MR 1437985
  • [9] L. Landau and E. Lifshitz, Electrodynamics of continuous media, Pergamon Press, New York, 1960
  • [10] M. Luskin and L. Ma, Analysis of the finite element approximation of microstructure in micromagnetics, SIAM J. Numer. Anal. 29, 320-331 (1992) MR 1154269
  • [11] M. W. Miranker and B. E. Willner, Global analysis of magnetic domain, Quart. Appl. Math. 37, 221-238 (1987) MR 548986
  • [12] R. C. Rogers, A nonlocal model for the exchange energy in ferromagnetic materials, J. Integral Equations Appl. 3, 85-127 (1991) MR 1094932
  • [13] M. Slemrod, Instability of steady shearing flows in a non-linear viscoelastic fluid, Arch. Rational Mech. Anal. 68, 211-225 (1978) MR 509225
  • [14] H. F. Tiersten, Coupled magnetomechanical equations for magnetically saturated insulators, J. Math. Phys. 5, 1298-1318 (1964) MR 0181224
  • [15] H. F. Tiersten, Variational principle for saturated magnetoelastic insulators, J. Math. Phys. 6, 779-787 (1995) MR 0177766
  • [16] A. Visintin, On Landau-Lifshitz' equations for ferromagnetism, Japan J. Appl. Math. 2, 69-84 (1985) MR 839320

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q72, 35B65, 74F15, 74H99, 78A55

Retrieve articles in all journals with MSC: 35Q72, 35B65, 74F15, 74H99, 78A55

Additional Information

DOI: https://doi.org/10.1090/qam/1738555
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society