Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Free energies in the frequency domain: the scalar case


Author: J. M. Golden
Journal: Quart. Appl. Math. 58 (2000), 127-150
MSC: Primary 74D05; Secondary 30E20, 74A20
DOI: https://doi.org/10.1090/qam/1739041
MathSciNet review: MR1739041
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A general closed expression is given for the isothermal minimum free energy of a linear viscoelastic material in terms of Fourier-transformed quantities. A one-parameter family of free energies is constructed, ranging continuously from the maximum to the minimum free energies.


References [Enhancements On Off] (What's this?)

  • [1] A. J. Staverman and F. Schwarzl, Thermodynamics of viscoelastic behaviour, Proc. Konink. Nederl. Akad. Wettensch. B55, 474-485 (1952)
  • [2] D. Bland, The Theory of Linear Viscoelasticity, Pergamon, London, 1960 MR 0110314
  • [3] S. C. Hunter, Tentative equations for the propagation of stress, strain and temperature fields in viscoelastic solids, J. Mech. Phys. Solids 9, 39-51 (1961) MR 0165780
  • [4] S. Breuer and E. T. Onat, On recoverable work in linear viscoelasticity, Z. Aneew. Math. Phys. 15, 13-21 (1964) MR 0178644
  • [5] S. Breuer and E. T. Onat, On the determination of free energy in viscoelastic solids, Z. Angew. Math. Phys. 15, 185-191 (1964)
  • [6] B. D. Coleman, Thermodynamics of materials with memory, Arch. Rational Mech. Anal. 17, 1-46 (1964) MR 0171419
  • [7] B. D. Coleman and V. J. Mizel, A general theory of dissipation in materials with memory, Arch. Rational Mech. Anal. 27, 255-274 (1967) MR 0220474
  • [8] B. D. Coleman and D. R. Owen, A mathematical foundation for thermodynamics, Arch. Rational Mech. Anal. 54, 1-104 (1974) MR 0395502
  • [9] B. D. Coleman and D. R. Owen, On thermodynamics and elastic-plastic materials, Arch. Rational Mech. Anal. 59, 25-51 (1975) MR 0381526
  • [10] W. A. Day, Thermodynamics based on a work axiom, Arch. Rational Mech. Anal. 31, 1-34 (1968) MR 1553518
  • [11] W. A. Day, Reversibility, recoverable work and free energy in linear viscoelasticity, Quart. J. Mech. Appl. Math. 23, 1-15 (1970) MR 0273881
  • [12] W. A. Day, The thermodynamics of materials with memory, in Materials with Memory, ed. D. Graffi, Liguori, Naples, 1979
  • [13] M. Fabrizio and A. Morro, Thermodynamic restrictions on relaxation functions in linear viscoelasticity, Mech. Res. Comm. 12, 101-105 (1985)
  • [14] M. Fabrizio and A. Morro, Viscoelastic relaxation functions compatible with thermodynamics, J. Elasticity 19, 63-75 (1988) MR 928727
  • [15] D. Graffi and M. Fabrizio, Sulla nozione di stato materiali viscoelastici di tipo ``rate", Atti Accad. Naz. Lincei 83, 201-208 (1990) MR 1142459
  • [16] D. Graffi and M. Fabrizio, Non unicità dell'energia libera per materiali viscoelastici, Atti Accad. Naz. Lincei 83, 209-214 (1990)
  • [17] A. Morro and M. Vianello, Minimal and maximal free energy for materials with memory, Boll. Un. Mat. Ital. 4A, 45-55 (1990) MR 1047512
  • [18] M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia, 1992 MR 1153021
  • [19] M. Fabrizio, C. Giorgi, and A. Morro, Free energies and dissipation properties for systems with memory, Arch. Rational Mech. Anal. 125, 341-373 (1994) MR 1253168
  • [20] M. Fabrizio, Existence and uniqueness results for viscoelastic materials, in Crack and Contact Problems for Viscoelastic Bodies, eds. G. A. C. Graham and J. R. Walton, Springer-Verlag, Vienna, 1995 MR 1411685
  • [21] M. Fabrizio, C. Giorgi, and A. Morro, Internal dissipation, relaxation property and free energy in materials with fading memory, J. Elasticity 40, 107-122 (1995) MR 1364749
  • [22] A. Morro, Wave solutions in linear viscoelastic materials, in Crack and Contact Problems for Viscoelastic Bodies, eds. G. A. C. Graham and J. R. Walton, Springer-Verlag, Vienna, 1995 MR 1411687
  • [23] G. Del Piero and L. Deseri, On the concepts of state and free energy in linear viscoelasticity, Arch. Rational Mech. Anal. 138, 1-35 (1997) MR 1463802
  • [24] G. Del Piero and L. Deseri, On the analytic expression of the free energy in linear viscoelasticity, J. Elasticity 43, 247-278 (1996) MR 1415545
  • [25] M. E. Gurtin and W. J. Hrusa, On energies for nonlinear viscoelastic materials of single-integral type, Quart. Appl. Math. 46, 381-392 (1988) MR 950610
  • [26] J. M. Golden and G. A. C. Graham, Boundary Value Problems in Linear Viscoelasticity, Springer-Verlag, Berlin, 1988 MR 958684
  • [27] N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953 MR 0355494
  • [28] M. E. Gurtin and I. Herrera, On dissipation inequalities and linear viscoelasticity, Quart. Appl. Math. 23, 235-245 (1965) MR 0189346
  • [29] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon, Oxford, 1937
  • [30] I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972
  • [31] P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953 MR 0059774

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74D05, 30E20, 74A20

Retrieve articles in all journals with MSC: 74D05, 30E20, 74A20


Additional Information

DOI: https://doi.org/10.1090/qam/1739041
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society