Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics

Authors:
Jiequan Li and Hanchun Yang

Journal:
Quart. Appl. Math. **59** (2001), 315-342

MSC:
Primary 76N99; Secondary 35B35, 35L65, 35M20, 35Q35

DOI:
https://doi.org/10.1090/qam/1827367

MathSciNet review:
MR1827367

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study zero-pressure gas dynamics, which is a nonstrict hyperbolic system of nonlinear conservation laws with delta-shock waves in solutions. By using the generalized Rankine-Hugoniot relations to solve the Riemann problem with two pieces of constant initial data, multidimensional planar delta-shock waves dependent upon a family of one parameter are obtained. Furthermore, we choose a unique entropy solution through the process of a viscosity vanishing, and obtain a stability for delta-shocks in multidimensions.

**[A]**R. A. Adams,*Sobolev Spaces*, Pure and Applied Math., vol. 65, New York, Academic Press, 1975 MR**0450957****[AH]**R. K. Agarwal and D. W. Halt,*A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows, Frontiers of Computational Fluid Dynamics*, edited by D. A. Caughey and M. M. Hafes, John Wiley and Sons, 1994**[B]**F. Bouchut,*On zero-pressure gas dynamics, Advances in kinetic theory and computing*, Series on Advances in Mathematics for Applied Sciences, Vol. 22, World Scientific, River Edge, NJ, 1994, pp. 171-190 MR**1323183****[BG]**Y. Brenier and E. Grenier,*Sticky particles and scalar conservation laws*, SIAM J. Numer. Anal.**35**, 2317-2328 (1998) MR**1655848****[D]**C. M. Dafermos,*Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by viscosity method*, Arch. Rational Mech. Anal.**52**, 1-9 (1973) MR**0340837****[ERS]**W. E, Yu. G. Rykov, and Ya. G. Sinai,*Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics*, Comm. Math. Phys.**177**, 349-380 (1996) MR**1384139****[J]**K. T. Joseph,*A Riemann problem whose viscosity solutions contain delta-measures*, Asymptotic Analysis**7**, 105-120 (1993) MR**1225441****[Ko]**D. J. Korchinski,*Solutions of a Riemann problem for a system of conservation laws possessing classical solutions*, Adelphi University Thesis, 1977**[KK]**B. L. Keyfitz and H. C. Kranzer,*A viscosity approximation to system of conservation laws with no classical Riemann solution in Nonlinear Hyperbolic Problems*, Lecture Notes in Mathematics, Vol. 1042, Springer-Verlag, Berlin/New York, 1989 MR**1033283****[La]**P. D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shock waves*, SIAM, Philadelphia, 1973 MR**0350216****[Le]**P. Le Floch,*An existence and uniqueness result for two nonstrictly hyperbolic systems*, in*Nonlinear Evolution Equations that Change Type*, IMA 27 in Mathematics and its Applications, Springer-Verlag, 1990 MR**1074190****[LC]**Y. Li and Y. Cao,*Large particle difference method with second order accuracy in gas dynamics*, Scientific Sinica (A)**28**, 1024-1035 (1985) MR**866458****[LL]**J. Li and W. Li,*The Riemann problem for the zero-pressure flow in gas dynamics*, Progress in Natural Sciences, to appear**[LZ]**J. Li and T. Zhang,*Generalized Rankine-Hugoniot relations of delta-shocks in solutions of transportation equations*, Advances in Nonlinear Partial Differential Equations and Related Areas, World Sci. Publishing, River Edge, NJ, 1998 MR**1690831****[M-Z]**A. Majda, G. Majda, and Y. Zheng,*Concentrations in the one-dimensional Vlasov-Poisson equations I: Temporal development and non-unique weak solutions in the single component case*, p. 290, equation (5.12), Physica D, 74, 268-300 (1994) MR**1286201****[SZe]**S. F. Shandarin and Ya. B. Zeldovich,*The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium*, Rev. Mod. Phys.**61**, 185-220 (1989) MR**989562****[SZh]**W. Sheng and T. Zhang,*The Riemann problem for the transportation equations in gas dynamics*, Mem. Amer. Math. Soc.**137**(1999) MR**1466909****[TZ]**D. Tan and T. Zhang,*Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws*(I):*Four-J cases*, J. Differential Equations**111**, 203-254 (1994) MR**1284413****[TZZ]**D. Tan, T. Zhang, and Y. Zheng,*Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws*, J. Differential Equations**112**, 1-32 (1994) MR**1287550****[ZZ]**T. Zhang and Y. Zheng,*Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems*, SIAM J. Math.**21**, No. 3, 593-630 (1990) MR**1046791**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76N99,
35B35,
35L65,
35M20,
35Q35

Retrieve articles in all journals with MSC: 76N99, 35B35, 35L65, 35M20, 35Q35

Additional Information

DOI:
https://doi.org/10.1090/qam/1827367

Article copyright:
© Copyright 2001
American Mathematical Society