Convex polyhedra quantum billiards in

Author:
Richard L. Liboff

Journal:
Quart. Appl. Math. **60** (2002), 75-85

MSC:
Primary 81Q50

DOI:
https://doi.org/10.1090/qam/1878259

MathSciNet review:
MR1878259

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: "S-quantum billiards'' are defined in . These billiards include the regular convex polyhedra as a subset. The ``first-excited-state theorem'' states that for such quantum billiards: (a) a first excited state (second eigenstate of the Laplacian) exists whose nodal surface is a plane of bisecting symmetry of the billiard; (b) the degeneracy of this state is equal to the dimension in which the billiard exists. It is shown that for such billiards, its bisecting nodal surface is one of minimum energy. The (a) component of the preceding theorem is proved with the latter proof and a conjecture that is based on recent theorems of Lin, Melas, and Alessandrini and a described smoothing procedure. Components of group theory, as well as an ansatz addressing the higher dimensions, come into play in establishing the (b) component of the theorem. An appendix is included describing properties of nodal intersection with a boundary.

**[1]**Steven W. McDonald and Allan N. Kaufman,*Wave chaos in the stadium: statistical properties of short-wave solutions of the Helmholtz equation*, Phys. Rev. A (3)**37**(1988), no. 8, 3067–3086. MR**937657**, https://doi.org/10.1103/PhysRevA.37.3067**[2]**Mark A. Pinsky,*The eigenvalues of an equilateral triangle*, SIAM J. Math. Anal.**11**(1980), no. 5, 819–827. MR**586910**, https://doi.org/10.1137/0511073**[3]**Giovanni Alessandrini,*Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains*, Comment. Math. Helv.**69**(1994), no. 1, 142–154. MR**1259610**, https://doi.org/10.1007/BF02564478**[4]**R. Courant and D. Hilbert,*Shu-hsüeh wu-li fang fa. Chüan I*, Translated from the English by Ch’ien Min and Kuo Tun-jen, Science Press, Peking, 1965 (Chinese). MR**0195654****[5]**P. R. Garabedian,*Partial differential equations*, 2nd ed., Chelsea Publishing Co., New York, 1986. MR**943117****[6]**Richard L. Liboff,*The polygon quantum-billiard problem*, J. Math. Phys.**35**(1994), no. 2, 596–607. MR**1257535**, https://doi.org/10.1063/1.530874**[7]**Richard L. Liboff,*Circular-sector quantum-billiard and allied configurations*, J. Math. Phys.**35**(1994), no. 5, 2218–2228. MR**1271917**, https://doi.org/10.1063/1.530547**[8]**Richard L. Liboff,*Nodal-surface conjectures for the convex quantum billiard*, J. Math. Phys.**35**(1994), no. 8, 3881–3888. MR**1284617**, https://doi.org/10.1063/1.530453**[9]**V. Amar, M. Pauri, and A. Scotti,*Schrödinger equation for convex plane polygons: a tiling method for the derivation of eigenvalues and eigenfunctions*, J. Math. Phys.**32**(1991), no. 9, 2442–2449. MR**1122533**, https://doi.org/10.1063/1.529172**[10]**P. J. Richens and M. V. Berry,*Pseudointegrable systems in classical and quantum systems*, Physica**2D**, 412-495 (1981)**[11]**Chang Shou Lin,*On the second eigenfunctions of the Laplacian in 𝑅²*, Comm. Math. Phys.**111**(1987), no. 2, 161–166. MR**899848****[12]**Antonios D. Melas,*On the nodal line of the second eigenfunction of the Laplacian in 𝑅²*, J. Differential Geom.**35**(1992), no. 1, 255–263. MR**1152231****[13]**F. A. Cotton,*Chemical Applications of Group Theory*, third edition, Wiley-Interscience, New York, 1993**[14]**G. Alessandrini and R. Magnanini,*The index of isolated critical points and solutions of elliptic equations in the plane*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**19**(1992), no. 4, 567–589. MR**1205884****[15]**Philip M. Morse and Herman Feshbach,*Methods of theoretical physics. 2 volumes*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR**0059774****[16]**H. S. M. Coxeter,*Regular polytopes*, 3rd ed., Dover Publications, Inc., New York, 1973. MR**0370327****[17]**Wilhelm Magnus and Fritz Oberhettinger,*Formulas and Theorems for the Special Functions of Mathematical Physics*, Chelsea Publishing Company, New York, N.Y., 1949. Translated by John Wermer. MR**0029000****[18]**Erwin Kreyszig,*Differential geometry*, Dover Publications, Inc., New York, 1991. Reprint of the 1963 edition. MR**1118149****[19]**J. S. Lamont,*Applications of Finite Groups*, Dover, New York, 1987**[20]**Larry C. Grove,*The characters of the hecatonicosahedroidal group*, J. Reine Angew. Math.**265**(1974), 160–169. MR**0330275**, https://doi.org/10.1515/crll.1974.265.160

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
81Q50

Retrieve articles in all journals with MSC: 81Q50

Additional Information

DOI:
https://doi.org/10.1090/qam/1878259

Article copyright:
© Copyright 2002
American Mathematical Society